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Abstract

We study how learning and influence co-evolve in a social network, eventually de-

termining both the pattern of social influence across individuals and the distribution of

their opinions or beliefs. Our model generalizes the classical model of DeGroot (1974)

to multidimensional opinions and a finite learning span. This generalization allows us

to rely on an intuitive notion of agent similarity – widely used in practice – to de-

fine a homophily-based condition that endogenizes in a stark manner the pattern of

inter-agent influence that can prevail at equilibrium.

Our analysis of the model starts by establishing the existence of equilibrium, which

is followed by its characterization in some simple contexts. Next, we show that, at

equilibrium, the strength of the link between any two agents is given by its “support”

– roughly, the amount of third-part influence impinging on both agents. This result

leads to the key insight that disconnected groups may fail to integrate even if numerous

links are created across them. It also leads to the identification of a set of sufficient

conditions for which social segmentation remains a robust state of affairs – in particular,

dynamically stable under a natural adjustment process.

Keywords: social learning; homophily; influence; echo chambers; integration.

JEL classif. codes: D83, D85.

1 Introduction

In this paper, we develop the idea that the network channeling social influence is shaped in

conjunction with the learning process that unfolds on it – that is, we propose a model where

the two dimensions, influence and learning, co-evolve. This novel perspective allows us to

shed light on the important issue of how social learning (e.g. the formation of individual

opinions in a social context) is affected by the relaxation of the common, but unrealistic,

assumption that the pattern of social influence stays fixed. Indeed, one expects that, in

the real world, “influence weights” are usually affected by the ongoing learning process of

agents, and this may end up having a substantial and lasting effect on the final outcome.
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In particular, it may exacerbate the tendency of an initially cohesive society to become

disegregated into separate groups that hardly interact. This, in fact, has been highlighted

as one of the distinct, and also worrying, features of modern societies. For, today, despite

the unquestionable abundance of easily reachable information, individuals with dissenting

views often tend to be scarcely exposed to each other. Paradoxically, this means that,

de facto, the population may end up living in a relatively poor information environment.

The detrimental social consequences of the “echo chambers” thus induced can hardly be

exaggerated.1

To shed light on the problem, we propose a learning model that builds upon the classical

setup proposed by DeGroot (1974) – studied in the economic literature by, among others,

DeMarzo, Vayanos and Zwiebel (2003) and Golub and Jackson (2010, 2012). In the DeGroot

framework, the opinion (or belief2) held by an agent adjusts over time by combining linearly

her immediately preceding opinions and those of others. The vectors of weights specifying

how each agent impinges on the learning of any other agent in the population define what is

called the influence network/matrix, which fully governs the overall social-learning process.

Under the twin assumptions that the number of learning rounds is unbounded and the

influence network is connected, it can be shown that mild regularity conditions imply that

the population converges to consensus, i.e. all agents eventually hold the same opinion.

The situation, however, is interestingly different if, as in our case, learning involves finite

learning spells. Under these circumstances, the pattern of social influence must play a key

role in modulating how much convergence of opinions is attained through social learning.

That is, in general, the network positions of different agents will influence the extent to

which their initial differences in opinions may persist (or perhaps even widen) through

social interaction. Naturally, one of the reasons for postulating a finite learning process is

that it adds a welcome dose of realism: in the real world, where new issues often come and

go quite fast, the time span during which social attention is focused on any one of them

is relatively short. Our main motivation here, however, is of a modeling nature. For, as

we explain next, finite learning spells play a crucial role in generating the heterogeneity

of agent behavior on which we build our network-formation theory, i.e. the theory that

endogenously determines the prevailing pattern of social influence.

1 A good illustration of the problem is documented by Adamic and Glance (2005), who study the deep

divide between conservative and liberal blogs in the period preceding the U.S. Presidential Election of 2004.

With a different focus, Bishop (2008) discusses the geographical basis for this phenomenon and its negative

effect on social cohesion. For a more general approach to the problem, we refer to Boutyline and Willer

(2017), who show that the interaction bias is more prevalent the more extreme are the political views held by

individuals. Finally, another interesting illustration is provided by Golub and Jackson (2012), who describe

how political prior alignment segmented the information (and hence ended up segmenting the opinion as

well) of the American public when the question arose in 2003 as to whether or not Iraq had weapons of mass

destruction.
2In principle, we could apply this rule to any continuous behavioral trait with a compact range.
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In our model, the key postulate we invoke for endogenizing influence is that of homophily

– that is, the tendency of individuals to associate (or link) with others who share a similar

trait, behavior, or (as in our context) opinions and beliefs. The importance of homophily in

determining how individuals construct their social network has been widely documented in

the sociological literature. For a good early account of its pervasiveness in social environ-

ments, the reader is referred to the seminal work by Lazarsfeld and Merton (1954), while a

modern survey of recent evidence can be found in the review by McPearson, Smith-Lovin

and Cook (2001).3 Concerning the specific problem that concerns us here, namely, how

homophily impinges on opinion and belief formation, Golman, Loewenstein, Moene, and

Zarri (2016) carry out an insightful discussion of modern literature, covering a rich range of

empirical evidence on what they call the innate human preference for “belief consonance.”

As they explain, in many cases this urge for consonance leads to belief clustering, i.e. the

choice “to associate with – that is, become friends with, work with, and even have romantic

relationships with – others who share their beliefs” (see op. cit., p. 177).

In line with the previous discussion, it is worth emphasizing that, in the present paper,

homophily is taken to be a descriptive postulate, not a normative one. For, in general, if

agents were to choose optimally with whom to connect, it is plausible that, in many cases

(e.g. when information gathering is the main objective), they would prefer to do so with

others who are different from them (hence likely to hold complementary information). For

a good illustration of the potentially negative effects of homophily on social learning, the

reader is referred to Golub and Jackson (2012) and Lobel and Sadler (2013). In different

contexts (DeGroot learning framework in the first case, Bayesian in the second) they show

that homophily can be detrimental to welfare by slowing down, or blocking altogether, the

ability of a population to learn some relevant state of the world through interactive learning.

In a nutshell, our homophily-based approach to endogenizing the network of social in-

fluence involves tailoring the weight of each link to the corresponding similarity of opin-

ions/beliefs of the connected agents. In this respect, an important property that will be

assumed on the underlying environment is that it is rich enough to span opinions in multi-

ple dimensions. Thus, for example, individuals may hold opinions on a number of different

topics: economic, political, religious, etc. Or, even if they restrict to just one such cate-

gory, say the economic one, their concern covers a wide range of different issues such as

growth, unemployment, inflation, or income distribution. Such richness of the “topic space,”

however, cannot be accommodated by the traditional DeGroot model, which is inherently

one-dimensional.4 This leads us to extending the theoretical framework proposed by DeG-

3For a fuller perspective on the phenomenon, see also Cohen (1977), Kandel (1978) Marsden (1987, 1988),

Alexander et al. (2001), Moody (2001), and Knecht et al. (2010).
4Even though multidimensional versions of the model have been formulated – see e.g. DeMarzo, Vayanos

and Zwiebel (2003) – they deal with each dimension independently and thus lack one of the features that is

important in the real world as well as our model, namely, that correlations across the different dimensions (in

part, brought about by social interaction itself) carry relevant information and have interesting implications.
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root, endowing it with a mathematical structure (that of random variables) that not only

accounts for the required multidimensionality but provides as well a natural way to measure

opinion similarity by focusing on correlations.

Formally, our approach is grounded on the equilibrium notion we label Equilibrium

Influence Matrix (EIM). Given some arbitrary attention/observation network (a binary

network specifying exogenous constraints) the idea underlying the EIM concept is simple:

At equilibrium, each individual should “apportion the influence” among the agents she ob-

serves in proportion to their relative similarity (i.e. correlation) of opinions.

With this equilibrium concept in hand, our main objective is to explore how the patterns

of influence induced by an EIM depend on the following three features of the environment:

(a) the structure of the initial signals received by the agents (which define their initial

opinions);

(b) the depth of the learning process (how many rounds of opinion adjustment are con-

ducted within each learning spell);

(c) the attention network (since, naturally, an agent can exert influence only on those

who pay attention to her).

Our analysis starts by establishing a basic existence result : an EIM exists for any set of

initial signals, learning depth, and attention network. This equilibrium matrix is then char-

acterized for some useful scenarios, e.g. the benchmark cases where the number of learning

rounds is unbounded or the attention network is complete. Our main result, however, ap-

plies generally to any attention network and learning depth. It involves the identification of

a topological measure for the influence network that characterizes the equilibrium influence

strengths prevailing at any equilibrium. Specifically, the requirement is that the equilibrium

influence that any agent i exerts on another one j must be proportional to the accumulated

normalized influence that all other agents exert on both i and j. We call this magnitude

the support of the relationship between i and j.5

The important insight to be gathered from this result is that segmentation of the popu-

lation into groups may be hard to overcome by the mere establishment of “bridging links”

across them. Indeed, we show that even if many such links exist, they will fail to integrate

the population unless they are properly “supported.” In other words, the conclusion is that,

at equilibrium, only bridging links that enjoy high support may channel significant “influ-

ence” across groups and hence promote integration. This stands in interesting contrast with

5This notion is conceptually related to what Easley and Kleinberg (2010) call “neighborhood overlap”

and Jackson, Rodŕıguez-Barraquer and Tan (2012) label“link support.” One important difference, however,

is that our measure of support reflects the accumulated third-party influence – a real variable – not just the

number of agents exerting that influence.

4



the celebrated dictum in the social network literature put forward by Granovetter (1983)

– “the strength of weak links,” which applies to information rather than influence. In our

context, weak links are not strong, in the sense of being effective channels of novel informa-

tion.6 They are strong because they have substantial support (or what, in an informational

vein, could be understood as some measure of redundancy).

Finally, to understand better the issue of social segmentation, the last part of the paper

focuses on a particularly stark version of the problem and studies it dynamically. We start

the analysis by considering two groups that are disconnected across (i.e. pay no attention to

each other) and are fully connected within (hence provide the best local support structure).

Then we suppose that some links are added to the underlying attention network with the

aim of bridging influence between the two groups. The question we pose is under what

conditions is segmentation a robust phenomenon. Or, more formally, when is it a locally

stable equilibrium for the implicit dynamics underlying the EIM concept. Our answer to this

question is in line with, and complements, the aforementioned analysis. Besides confirming

that segmentation dynamically persists if the bridging links are few and weakly supported,

it also shows that a similar conclusion obtains if the learning spells are short, the groups

are large, and/or asymmetric in size. This enriches our understanding of the issue of social

segmentation, by highlighting additional factors that play a relevant role and casting the

problem in a dynamic manner.

The rest of the paper is divided into three more sections. Section 2 presents the basic

framework, Section 3 carries out the analysis, Section 4 concludes with a summary. For the

sake of a smooth presentation, all formal proofs are gathered in the Appendix.

2 The model

2.1 The pattern of communication and influence

Consider a given population of agents, N = {1, 2, ..., n}, who are connected as specified by

an exogenous attention network on the set N . The links are binary (i.e. of the same type and

intensity) and directional (connect one agent to another in a particular direction). Formally,

it is convenient to represent this network through an adjacency matrix L ≡ (lij)i,j∈N with

lij = 1 if player i is connected to agent j 6= i and lij = 0 otherwise. When such a connection

exists, the interpretation is that agent i pays attention to, and hence can be influenced by

(or learn from) agent j.

For the case i = j, we shall posit that lii = η ≥ 0, i.e. every agent pays attention

to herself as parametrized by η. Intuitively, in a dynamic setup, this parameter can be

6A similar point has been made by Uzzi (1997), Reagans and McEvily (2003), or Aral and Van Alstyne

(2011), when they stress the importance of what is sometimes labeled “bandwidth” of links.
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viewed as capturing the extent to which agents display persistence (or “stubbornness) in

their opinions. Large values for η reflect high persistence, meaning that the revised opinions

of each individual are largely based on their own preceding opinions. In contrast, η = 0

corresponds to the extreme polar case where the revision of every agent is based only on the

input received from the other agents, while she attributes zero weight to her own previous

opinions. For most of the analysis in this paper the parameter η plays no significant role.

Thus, for notational simplicity, we shall usually focus on the case η = 1, in which each agent

pays as much attention to herself as to any other. The case η = 0 will be used occasionally

for expositional purposes, when it is useful to explain some of the main ideas effectively.

The attention network introduced above represents the underlying structure that is as-

sumed to channel/restrict any bilateral interaction across agent pairs. It can be interpreted

as reflecting the exogenous features of the situation (say, geographical, ethnic, linguistic, or

hierarchical) that constrain whether or not an agent can directly influence another agent.

Inter-agent influence, therefore, must respect the attention network, in the sense that it can

flow from agent i to j only if the latter pays attention to the former (i.e. only if lji = 1). In

fact, the pattern of effective inter-agent influence can itself also be formalized as a network –

what we shall call the influence network – and represented through a corresponding matrix

A ≡ (aij)i,j∈N . However, in contrast to the attention network, the influence network is

weighted and endogenous. We explain each of these two important characteristics in turn.

(i) A typical entry aij of the matrix A is interpreted as the (relative) intensity with which

agent j influences i – i.e. the weight that i attributes to j’s opinions in shaping her

own. For convenience, every such measure of bilateral influence is taken to lie in the

interval [0, 1] and every row vector of individual influences, ai ≡ (aij)j∈N , is assumed

to add up to unity. Thus, A is a row-stochastic matrix.

(ii) In contrast with the attention matrix, the key feature that characterizes the influence

matrix is that it is endogenous. Specifically, the pattern of inter-agent influence is

endogenized through an equilibrium concept that requires “homophily-based consis-

tency” between the influence weights and the behavioral correlations induced by the

social adjustment process.

To formulate precisely the equilibrium concept mentioned above, the following core

components of the model need to be formally introduced: (a) the behavioral adjustment

dynamics; (b) the notion of homophily; (c) the required consistency between the former

two. To do so is the objective of the following three subsections.

2.2 Learning dynamics

The starting point of our model is the learning framework proposed by DeGroot (1974),

which can be summarized as follows. Time proceeds discretely, t = 0, 1, 2, ..., and at every
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t each agent i ∈ N holds some opinion xi(t), identified with a point in a common and

pre-specified compact interval, say [0, 1]. Thus, given some initial signals, βi ∈ [0, 1] for

every i ∈ N , the opinions of individuals evolve over time as follows:

xi(t) =
n∑
j=1

aijxj(t− 1) (i = 1, 2, ..., n; t = 1, 2, ...)

with xi(0) = βi for every agent i. Or, in compact matrix form, we may write

x(t) = Ax(t− 1) (t = 1, 2, ...) (1)

whereA is the prevailing (fixed) influence matrix specified as above, and x(t) = (x1(t), ...., xn(t))′

is the column vector of opinions at t.7

In this paper we extend DeGroot’s framework in two complementary directions: (a)

the learning span is given by some K, a parameter of the model (typically finite); (b)

opinions are multidimensional. As explained, the motivation for (a)-(b) is two-fold. First,

these two features allow for a more realistic description of social learning in real-world

environments that are both fast-changing and complex. Second, they yield a theoretical

setup that is tractable and rich enough to address our primary modeling objective, namely,

the formulation of a homophily-based framework where the pattern of influence can be

suitably endogenized.

To model multidimensional opinions, suppose that there is a (finite and common) set of

relevant issues/dimensions, Ω = {ω1, ω2, ..., ωD}, over which every agent i holds a particular

opinion xi(ωd) ∈ [0, 1] for each ωd ∈ Ω. For example, xi(ωd) could be interpreted as the

fraction of time or budget that, according to i, should be devoted to issue ωd. In general, not

all issues are taken to be equally prominent, or frequent, in social discourse or in agents’

minds. Rather, there are some specific weights associated to each of them, as given by

a discrete measure on Ω. For simplicity, we assume that this measure is common across

individuals and it is normalized so that it can be formally treated as a probability. We

denote it by P, with P(ωd) reflecting the prominence of the issue ωd ∈ Ω.

Thus, mathematically, a (multidimensional) opinion displayed by any given agent i can

be conceived as a random variable8 x̃i : Ω→ R, where the set of issues Ω plays the role of

the underlying sample space on which the random variable is defined and P(·) that of the

corresponding probability density. A useful feature of this formalism is that it allows one

to rely on the statistical notion of correlation (here we shall rely on the standard Pearson

correlation coefficient) to assess the opinion similarity of any two agents. Indeed, this is

7As usual, the notation (·)′ applied to vectors and matrices stands for the corresponding transpose.
8Throughout we shall use the tilde to denote constructs, such as agents’ opinions, that display the

formal structure of a random variable even though, as discussed, in the present case its interpretation is not

stochastic.
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the typical approach implemented by the recommender systems that are widely used with

considerable success on the Internet (e.g. by Amazon.com, Booking.com, or Netflix.com).9

To fix ideas, consider the simple example where there are only three agents (1, 2, and 3)

and also just three issues that are of agents’ concern – say, climate change (ωc), education

(ωe), and Internet quality (ωi), each with the same prominence: P(ωc) = P(ωe) = P(ωi) =

1/3. Let us suppose that there are just three “opinion levels” that individuals attach to

each issue, which could be interpreted as the levels of government funding that are available

for each issue. Denote these levels by ` (low), m (medium), and h (high) – all three numbers

in the interval [0, 1] – and assume for simplicity that they satisfy m = (`+ h)/2.

Next suppose that the opinions x̃k displayed by each individual k = 1, 2, .3 are as follows:

x̃1(ωc) = h; x̃1(ωe) = `; x̃1(ωi) = m

x̃2(ωc) = m; x̃2(ωe) = h; x̃2(ωi) = `

x̃3(ωc) = m; x̃3(ωe) = `; x̃3(ωi) = h.

Then, it is straightforward to compute that the Pearson correlation coefficient among the

opinions of the three agents (cf. (4) below) are:

corr(x̃1, x̃2) = −1

2
; corr(x̃1, x̃3) =

1

2
; corr(x̃2, x̃2) = −1. (2)

Thus, even though the opinions of agents 2 and 3 are perfectly anti-correlated, individual

1’s opinion is mildly correlated in opposite directions with the opinion of those two agents.

This provides a simple illustration of the diversity of situations that our similarity measure

can deliver when opinions are multidimensional.

In the extended DeGroot framework, the social-learning dynamics is defined as a direct

counterpart of that posited for the classical setup. That is, we simply replace (1) by the

following generalization:

x̃(t) = Ax̃(t− 1) = Atx̃(0), (t = 1, 2, ...,K). (3)

The above formulation simply considers multidimensional opinions (thus, formally, random

variables) and the learning spell lasts K periods (typically finite). Of course, just as for the

standard framework, the learning process defined by (3) requires the specification of some

initial conditions. These are given by a set of initial signals β̃ ≡ (β̃i)i∈N . For simplicity,

these signals are taken to display the same format as the opinions themselves and hence

directly define initial opinions: x̃(0) = β̃. In principle, we shall allow such initial opinions

to be correlated, possibly reflecting some overlapping sources of information across agents.

9See, for example, Jannach et al. (2010) and Ricci et al. (2011), who discuss the so-called collaborative-

filtering systems. As in our case, the objective of these recommender systems is to identify individuals with

similar characteristics, as identified by the correlation of their previously observed decisions across a number

of relevant situations. For additional references on this topic, the reader may refer to Bobadilla et al. (2012),

Rajaraman et al. (2012), or Resnick et al. (1994).
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Thus the vector of random variables β̃ may display an arbitrary covariance matrix, which

we shall denote by Σβ̃. Note that for the degenerate case where Σβ̃ = 0 (i.e. a matrix with

all zero entries) we are led, if K → ∞, to a context that is equivalent to the one posited

by DeGroot. For, in this case, opinions are constant over all dimensions (hence, essentially,

one-dimensional) and the learning spells are unbounded, just as in the classical setup.

2.3 Homophily and equilibrium

Homophily is defined as the tendency of individuals to interact preferentially with those

who display similar characteristics. In our case, as explained above, these characteristics

are agents’ multidimensional opinions, formalized as random variables over a common state

space given by the set of relevant issues. As advanced, an advantage of this formalization is

that it provides a natural way to measure the similarity between the opinions held by any

given pair of individuals i and j, x̃i and x̃j , through their corresponding Pearson correlation

coefficient:

ρij(A) ≡ corr(x̃i(A), x̃j(A)) =
cij√
ciicjj

, where (cij)i,j∈N = AKΣβ̃(AK)′. (4)

Hence, heuristically, we declare two agents as similar if they adjust their behavior along

convergent directions. As explained in the previous subsection, this same criterion can

be, and indeed is, widely used nowadays by many firms and various organizations. Given

the extensive information available on the previous choices of individuals across Internet

platforms, such information is found to be very useful to target both products and/or

messages.10

Having defined our notion of inter-agent similarity, we turn now to introducing our

homophily-based notion of equilibrium. Conceptually, it is quite simple: an influence matrix

defines an equilibrium if the pattern of opinion similarity it induces reflects its own pattern

of influence – that is each agent attributes to each of the agents to whom she pays attention

an influence that is proportional to the extent at which their opinions are correlated at

the end of a learning spell. To proceed formally, it is convenient to make the simplifying

assumption (which shall hold throughout) that the covariance matrix Σβ̃ of the initial signals

is finite and has only non-negative entries.11 Then, all opinion correlations are non-negative

10Clearly, there are other reasonable approaches one can use to measure the similarity of random variables.

For example, a simple option would be to gauge the similarity of two agents i and j by the distance between

their mean opinions, |E[x̃i]− E[x̃k]|. If we think of Ω as containing mostly political issues, the ”expected”

or ”average” opinion of an individual could be identified with her ideology and then small values of the

aforementioned distance would capture ideological proximity. One of the important advantages of our

correlation-based measure is its invariance with respect to linear affine transformations. Thus, in particular,

it can be measured independently of the separate scales used to define individual opinions.
11If some signals were negatively correlated, Definition 5 could be adapted by replacing the correlations

ρij(·) by the non-negative truncation ρ+ij(·) ≡ max{ρij(·) , 0}. Nothing essential in our analysis would be

affected by this adaptation.
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and the equilibrium concept that endogenizes the influence matrix can be suitably defined

as follows.

Definition 1 Fix the learning time span K as well as the vectorial random variable β̃ ≡ x̃(0)

determining the initial signals. Let ρij(A) stand for the Pearson’s correlation coefficient between

the post-communication opinions x̃i(A) and x̃j(A) induced by social learning under an influence

matrix A. Then, matrix A∗ ≡
(
a∗ij

)
i,j∈N

is called an equilibrium influence matrix (EIM) if

a∗ij ∝ lijρij(A∗) (i, j = 1, 2, ..., n). (5)

The matrix A∗ will be also called homophily-consistent.

Note that, in view of the twin restriction that

(a) an agent i can be influenced only by those agents j whom she pays attention to (i.e.

whose lij 6= 0);

(b) only relative influence matters and hence the total influence exerted on every agent i

is normalized to unity (i.e.
∑

j∈N aij = 1),

the equilibrium condition (5) simply embodies the aforementioned requirement of pro-

portionality between similarity and influence.

Intuitively, one can interpret the homophily-consistency condition (5) as a fixed (or

stationary) point of an adjustment process in which, after every learning spell, agents re-

consider their influence weights so that they match (i.e. are proportional to) the observed

correlations of opinions. By way of a simple illustration, one could think of Twitter users,

who reconsider weekly the time and intensity they are going to devote to follow each of their

contacts. During the working days, they are too busy to do that, so they simply read the

tweets of their chosen contacts according to the plan. Then, on the week-end, they assess

the relative (dis)agreement they have experienced with each of the individuals they follow

and redraw the plan for the ensuing week accordingly.

We end this section with an example and a remark that bear on interesting aspects of

the model and should help understand it better. The former contains a simple two-agents,

two-issues example; the latter makes a methodological point concerning the role of opinion

multidimensionality in the analysis.

Example 1 (Two agents, two issues) Building on the Twitter analogy outlined above,

let us consider the simple framework where there are two agents and two issues that are equally

prominent in the social discourse, say, global warming and political polarization. At the beginning

of each week, both agents acquire (e.g., from the press or from the news channels) some new

information on these issues and assign a value to each of them in light of this new information.
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Each value reflects the urgency of the corresponding issue in agent’s mind. Suppose that the

respective values for agent 1 and agent 2 are,

(β1(ω1), β1(ω2)) = (0.6, 0.3), (β2(ω1), β2(ω2)) = (0.51, 0.49).

Hence, based on the current week’s news, agent 1 considers global warming to be ”twice as

urgent” as political polarization, while agent 2 assigns almost equal importance to both issues.

Combining this with the equal relevance of both issues, the latter vectors define the agents’

initial opinions x̃(0) = β̃ = (β̃1, β̃2). Viewing them as random variables, we compute the

corresponding covariance matrix and cross-agent correlation:

Σβ̃ =

(
.0001 .001

.001 .0225

)
, ρ12(β̃) =

0.001√
0.0001 · 0.0225

= 2/3.

In particular, note that the covariance between β̃1 and β̃2 is calculated as the issue-weighted

sum of the cross-agent products of the deviations from the respective agent averages,

Cov(β̃1, β̃2) =
∑2

d=1P(ωd)
{
β1(ωd)− E[β̃1]

}{
β2(ωd)− E[β̃2]

}
=

0.5 {0.6− 0.45} {0.51− 0.5}+ 0.5 {0.3− 0.45} {0.49− 0.5} = 0.001.

Thus, in the example, the process starts with a correlation of 2/3 between agents’ opinions.

Then, during the rest of the week, the agents exchange tweets while they keep adjusting their

opinions upon reading others’ tweets. Given the uniform adjacency matrix L, lij = 1 for i, j =

1, 2, assume, for simplicity, that there is only one round of communication within the week, and

that the matrix A applied in this round has each agent assigning the weight 2/3 to her own

opinion and 1/3 to that of the other. This leads to a pair of opinions x̃(1) = (x̃1(1), x̃2(1)) at

the end of the week that can be computed by (3):(
x1(ω1) x1(ω2)

x2(ω1) x2(ω2)

)
=

(
0.57 0.363

0.54 0.427

)
=

(
2/3 1/3

1/3 2/3

)(
.6 .3

.51 .49

)
.

Then, we can compute the corresponding covariance matrix and correlation coefficient as follows:

Σx̃(1) =

(
.01071 .00585

.00585 .00319

)
, ρ12(x̃(1)) = 1.

If we assume that the influence matrix to be used the following week is adjusted so that the

revised influence is proportional to correlation, the new influence matrix A′ can be readily found

to be:

A′ =

(
1/2 1/2

1/2 1/2

)
It is also easy to verify that A′ is an EIM in this example. Actually, we show in Proposition 3

in the next section that A′ is the only connected EIM. Finally, let us advance that the dynamic

adjustment process of the influence matrix illustrated in this example will play an important role

in Section 3.4 when we study the phenomena of bridging and segmentation from a dynamic

perspective.
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Remark 1 (Opinion multidimensionality) In our model, opinions are defined simultane-

ously on different issues (or dimensions). The question we address here is how much of such

a multidimensionality is necessary to render our approach meaningful. To make our point in

the starkest manner, let us suppose that, when regarded as random variables, the agents’ ini-

tial opinions are independent12 and their variances are identical, i.e. Σβ̃ = σI, where I is the

identity matrix and σ > 0. The common variance σ can be interpreted as a measure of how

much the alternative issues can be viewed as genuinely different in agents’ minds – if they were

not, we would have σ = 0 and all the opinion dimensions would be redundant. In this simplified

context, we may extend previous notation and rewrite the homophily-consistency condition (5)

as follows:

a∗ij =
lijρij(A

∗, σ)∑
k∈N likρik(A

∗, σ)
(i, j = 1, 2, ..., n), (6)

where ρij(A;σ) stands for the correlation between agents i and j when the influence matrix is

A and the opinion variance is σ. From (6), it can be easily verified that, given any attention

matrix L, the corresponding correlation coefficients ρij(A, σ) do not depend on the magnitude

of σ > 0. It follows, therefore, that the same EIM A∗ satisfies (6) for any fixed value of σ,

and hence also in the limit σ ↘ 0. This allows one to view A∗ as an EIM for any opinion

multidimensionality, no matter how small. 13

3 Analysis

In this section, we carry out the analysis of the model. First, Subsection 3.1 starts our anal-

ysis of endogenous EIMs by addressing the basic issue of equilibrium existence. Subsection

3.2 characterizes EIMs in some benchmark cases. Subsection 3.3 discusses the relationship

between homophily-consistency (i.e. equilibrium) and a suitable notion of link support or

overlap. Finally, Subsection 3.4 relies on the insights obtained in Subsection 3.3 to study the

relationship between communication/attention bridges and integration in some illustrative

cases.

3.1 Equilibrium existence

Our primary interest in this paper is to study the characteristics of endogenous patterns of

influence as captured by the equilibrium notion in Definition 1. Thus a first basic question

that must be addressed is the following: Does there always exist an equilibrium influence

matrix that satisfies the required consistency between the learning outcome and the influence

weights? A positive answer to this question is provided by the next result.

12Such independence is not essential for the argument and it is done just for the sake of formal simplicity.
13Methodologically, the approach is reminiscent of that pursued in other strands of literature (e.g. evolu-

tionary game theory – cf. Kandori et al. (1993) or Young (1993)), where a similar approach has been used

as a powerful selection device.

12



Proposition 1 Consider an arbitrary adjacency matrix L ≡ (lij)i,j∈N with lij ∈ {0, 1}, any

learning depth K ≥ 1, and any vectorial random variable β̃ governing agents’ initial opinions.

An influence matrix A∗ that satisfies (5) always exists.

Proof. See Appendix.

The proof of Proposition 1 follows from a standard fixed-point argument applied to the

vector field F : (∆n−1)n → (∆n−1)n given by:14

Fij(A;K,L,Σβ̃) ≡ Fij(A) ≡ lij ρij(A)∑
k∈N lik ρik(A)

(i, j = 1, 2, ..., n), (7)

which maps row-stochastic matrices A of size n× n satisfying

∀i, j ∈ N, lij = 0⇒ aij = 0 (8)

into other such matrices Ã = F (A), also satisfying (8). In Subsection 3.4, we apply F (·)
as an homophily-based adjustment rule that, operating across learning spells revises the

influence weights between attention-connected agents so as to match their corresponding

opinion correlation.

Figures 1 and 2 illustrate the EIMs for a randomly generated attention network with

n = 25 nodes. They are obtained by iterating the vector field F defined by (7) from a

situation where every agent assigns the same influence weight to each of her neighbors in

the attention network.

In Figure 1, we consider the case where the learning span is the shortest possible, K = 1.

We observe that the resulting pattern of equilibrium influence displays a marked structure

with small subsets of agents maintaining high-influence links among themselves while the

links with all other agents carry much lower influence. This implies that the end opinions

in the population will tend to be quite heterogeneous, with agents fragmented into opinion

clusters that display only light cross-interactions.

In contrast, Figure 2 displays an EIM that is spanned on the same attention network as

in Figure 1 but with communication proceeding for K = 100 rounds. In this alternative case,

the learning process eventually leads to a situation where agents hold the same opinions.

Such a perfect convergence among individual opinions induces in turn an influence matrix

where every agent attributes the same influence weight to each of her neighbors (and herself).

The induced EIM is therefore very different from the one resulting for K = 1 as it is

determined by the exogenous attention structure alone.

14As usual, ∆n−1 ⊂ Rn
+ denotes the (n− 1)−dimensional simplex.
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Figure 1: Graphical representation of an EIM A∗ ≡ (a∗ij)i,j∈N for an underlying attention network

with n = 25 nodes that is generated as a realization of an Erdös-Rényi random network. Initial

signals are determined by identical random variables (with unit variances) that are uncorrelated

across nodes. The learning depth is set to K = 1. The EIM is obtained through the iteration of

(7) from initial conditions in which every agent attributes a uniform weight to all her connections

in the attention network. The thickness of each edge ij is proportional to
a∗ij+a∗ji

2 . Self links are not

shown.

3.2 Some benchmark cases

In this subsection we consider two benchmark scenarios that are useful in different respects.

First, we show that the outcome in Figure 2 can be generalized to any connected15 attention

matrix as long as the learning span K is unbounded. This is the content of the following

result.

Proposition 2 Consider a connected attention network with adjacency matrix L ≡ (lij)i,j∈N ,

lij ∈ {0, 1}, and any vectorial random variable β̃ governing agents’ initial opinions. Then, if the

learning depth K →∞, the unique connected influence matrix A∗ ≡ (a∗ij)i,j∈N is given by

a∗ij =
lij∑
k∈N lik

(i, j = 1, 2, ..., n),

and the induced bilateral correlations among end opinions satisfy ρij(A
∗) = 1 for all i, j ∈ N .

Proof. See Appendix.

Thus, when the learning depth is unbounded, the only connected influence matrix that

meets the equilibrium requirement is the one that matches the attention network and assigns

uniform weights across neighbors. This result makes the important point that a connected

15Naturally, for attention networks (whose directed links are discrete) the notion of connectedness simply

requires that there exist a directed path between any two nodes/agents.
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Figure 2: Graphical representation of an EIM A∗ ≡ (a∗ij)i,j∈N under the same conditions as for

Figure 1 except that the learning depth is K = 100.

influence pattern with non-trivial local structure can arise only if the learning process falls

short of delivering social consensus – for, if such consensus obtains, the attention network

fully imposes its structure on an EIM. As an unbounded K leads to fully correlated opinions,

no feedback from the learning process will have any impact on the equilibrium pattern

of influence. However, the final (consensus) opinions will still typically depend on the

architecture of the communication (attention) network.16 It follows from this discussion

that in order to understand the rise of non-trivial influence structures it is essential to

contemplate a finite time span in learning.

Another interesting benchmark case concerns situations where the population is seg-

mented (endogenously) into separate influence components and, for each of these compo-

nents, the underlying attention structure is complete. Admittedly, this is a stark setup

but, as we shall explain, it is suggestive of some general forces that shape communication

among groups. We shall find it particularly useful in studying “bridging and segmentation”

in Subsection 3.4. Our analysis of the situation described above builds upon the following

result.

Proposition 3 Let the attention network be completely connected (i.e. the adjacency matrix

L ≡ (lij)i,j∈N satisfies lij = 1 for all i, j ∈ N). Then, for any given learning span K ≥ 1,

the unique connected influence network has the adjacency matrix A = Q(n) where, Q(n) ≡
(qij(n))i,j∈N stands for the row (and also column) stochastic square matrix with qij(n) = 1

n for

all i, j = 1, 2, .., n.

Proof. See Appendix.

16As shown by De Marzo el al. (2003) in the context of non-probabilistic opinions, the end common

opinion x∗(A) will be a convex combination of the initial opinions βi of each agent i, x∗ =
∑

i∈N ωiβi, where

each ωi =
|{j: lji=1}|∑

k∈N |{j: ljk=1}| , i.e. it is the unit-normalized in-degree of agent i in the attention network.
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This result asserts that if the attention matrix is such that every agent is connected

to every other agent (and signals are non-negatively correlated), then the only connected

influence matrix that meets the requirement of homophily consistency is the matrix Q(n)

where every agent influences directly each of the other agents with the same weight. The

fact that this matrix is homophily-consistent is quite clear: under Q(n), every agent is in

effect exposed to the same convex combination of the initial signals, which in turn supports

the uniform-influence matrix as an equilibrium. On the other hand, the fact that this matrix

is the unique EIM among those that define a connected influence network is less apparent.

It follows from a cumulative effect, in which indirect influence rises correlation, which in

turn increases direct influence (and thus correlation) up to the point where only a fully

symmetric pattern of influence arises at equilibrium.

Building upon Proposition 3, the following two straightforward corollaries follow.

Corollary 1 Let {Ns}rs=1 represent an r-element partition of the agent population N and

denote ns ≡ |Ns| for each s = 1, 2, ..., r, with n1 + ...+ nr = n. Assume a complete attention

network for each Ns. Suppose further that Σβ̃ ≡ (σij)i,j∈N satisfies σk,` = 0 if k ∈ Ns and

` ∈ Ns′ with s 6= s′. Then, if Q(nr) ≡ (qij(nr))
nr

i,j=1 stands for the uniform square matrix

of dimension nr with qij(nr) = 1
nr

for all i, j = 1, 2, .., nr and 0nr×ns stands for a matrix of

dimension nr × ns consisting of all zero, the block diagonal matrix

A =


Q(n1) 0n1×n2 · · · 0n1×nr

0n2×n1 Q(n2) · · · 0n2×nr

...
...

. . .
...

0nr×n1 0nr×n2 · · · Q(nr)


is an EIM, upon suitable index labeling.

Corollary 2 Under the conditions contemplated in Proposition 3, if the prevailing EIM is

connected then, for every K ≥ 1, all individuals hold identical (multidimensional) opinions after

the first round of learning, i.e. x̃i(A ; t, β̃) = x̃j(A ; t, β̃) for all i, j ∈ N and t ≥ 1.

Corollary 1 simply reflects the comments preceding the statement of Proposition 3 where

we explained that, in the absence of signal correlation across some subsets of the population,

these subsets can be treated as independent sub-populations. On the other hand, Corol-

lary 2 readily follows from the observation that if the influence exerted on, and received

from, others is uniformly spread, then from the first period of interaction onward all agents

combine the same initial signals in the same manner.

So far we have ignored what is a major issue in our framework, namely, the problem of

equilibrium multiplicity. To bring home the point sharply, suppose that individual signals

are uncorrelated and the population is partitioned into two subsets between which no in-

fluence flows (i.e. there is no agent in any of these subsets who has any influence on some
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agent of the other). Then, if the homophily consistency holds separately for each of the

subsets, it also holds globally and the situation defines an equilibrium. This holds, in fact,

even if the attention network is fully connected. The simple reason is that, if there is no

interaction/learning across those two subsets of agents, their opinions at the end of a learn-

ing spell must be uncorrelated just as their initial signals are. Then, our equilibrium notion

requires that no cross-group links with positive weights exist in the influence network. In

contrast, Proposition 3 above shows that (provided the attention network is complete) a

completely connected influence network with uniform weights that spans the two popula-

tions also satisfies our equilibrium condition. Moreover, such an influence network induces

identical end opinions of all agents for all values to the learning time span K. This example

illustrates vividly that equilibrium multiplicity is unavoidable in our model for some pa-

rameter configurations. In general, equilibrium multiplicity is a deep and difficult issue, a

detailed study of which we leave for future research.

3.3 Influence and support

In this subsection, we identify a topological measure of the influence network that char-

acterizes the equilibrium strengths of interpersonal influences at equilibrium. We start by

defining, for some given n× n binary adjacency matrix L ≡ (lij)i,j∈N ∈ {0, 1}n×n and any

pair of nodes ij, the following coefficient:

ϕik(L) ≡
∑n

s=1 lislks

(
∑n

s=1 l
2
is)

1
2 (
∑n

s=1 l
2
ks)

1
2

. (9)

Thus, ϕik(L) is a ratio of the number of nodes connected in L to i and k by their incoming

links over the geometric mean of i’s and k’s out-degrees. In other words, it is a normalized

measure of i’s and j’s shared neighborhood in L.

We note that (9) is closely related to the notion of link support defined for undirected

networks by Jackson, Rodŕıguez-Barraquer and Tan (2012). They declare that a link ik is

supported in some underlying network g if there exists an agent s, different from i and k,

such that the links is and ks also belong to g. Thus, in contrast with (9), their measure

is undirected, a link being (fully) supported when it is part of at least one triad. As these

authors explain, their notion of support is very different from the classical one of clustering,

and indeed the same applies to (9) as well.17 They find that support is one of the key

features of social networks required for the existence of robust cooperation equilibria.

There is also a close similarity of (9) with the notion of neighborhood overlap, defined

17The notion of support is link-based whereas that of clustering is node-based – it specifies the fraction

of neighbors of a node who are themselves connected. For example, if a pair of connected agents are both

part of various common “ clusters” (groups) but these clusters are not connected, the support of their link

can be very high but the clustering of each of them very low.
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in Easley and Kleinberg (2010) as the ratio,

number of nodes who are neighbors of both i and k

number of nodes who are neighbors of at least one of i or k
(10)

where in the denominator we do not count i or k themselves (even though i and k are

taken to be neighbors). For example, if i and k have no common acquaintances the ratio

(10) is equal to zero and the link ik represents a potential bridge between two different

communities. The neighborhood overlap (10) is also known as link clustering coefficient in

the network literature (e.g., Pajevic and Plenz, 2012).

The notion of support that we shall use here expands on that defined in (9) by allowing

for an arbitrary influence (hence weighted) matrix A as the argument of ϕik(·). In this

manner, we obtain a topological measure of support (we shall also refer to it as neighborhood

overlap) that can be applied to influence matrices A ≡ (aij)i,j∈N ∈ [0, 1]n×n. That is, we

define:

ϕik(A) ≡
∑n

s=1 aisaks

(
∑n

s=1 a
2
is)

1
2 (
∑n

s=1 a
2
ks)

1
2

. (11)

This measure is symmetric (i.e. ϕik(A) = ϕki(A)) and normalized (ϕik(A) ∈ [0, 1]) whenever

ϕik(A) is well-defined, i.e. whenever the ith and the kth row of A have at least one non-zero

entry each. In our context, the latter condition always holds as we require that each node

is connected (i.e. pays attention) to itself. As an immediate generalization, we shall also

be interested in using, instead of the matrix of direct (immediate) influence A, the matrix

AK ≡ B ≡ (bij)ij∈N capturing the indirect influence bij that an agent j has on agent i

after K rounds of learning. Since B inherits from A all its essential properties, the K-step

support ϕik(A
K) displays the same properties as the (one-step) support ϕik(A).

Based on the notion of K-step support, we obtain the following topological characteri-

zation of equilibrium influence matrices.

Proposition 4 Given the attention network with adjacency matrix L ≡ (lij)i,j∈N with lij ∈
{0, 1}, the learning depth K ≥ 1 and the covariance matrix of initial opinions Σβ̃ ≡ σ · I for

some σ > 0, the EIM A∗ ≡ (a∗ij)i,j∈N verifies:

a∗ik ∝ likϕik((A∗)K) (i, k = 1, 2, ..., n). (12)

Proof. See Appendix.

Heuristically, this result reflects the idea that common K-order partners help “support”

the relationship between i and j, and therefore the more such partners i and j share, the

stronger their relationship. More specifically, in our context the support comes from the

fact that, by being subject to common influence, agents i and k will tend to strengthen the

correlation of their behavior and hence, by homophily, their own link as well.
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For the particular case of K = 1, Proposition 4 leads to the stark implication that

link strength between two nodes is directly proportional to their neighborhood overlap, i.e.

to the (weighted) number of neighbors they have in common. Intuitively, this property

suggests that, in endogenous networks, strong links will tend to be arranged in “triangles.”

The literature – see e.g. Kossinets and Watts, (2006, 2009) and Kumpula et al. (2007)

– often rationalizes such configurations through the claim that, among strong links, the

principle of triadic/transitive closure applies (i.e. the friend of a friend tends to become a

friend). Our model, however, provides a quite different explanation for this phenomenon:

it is not the strength of the links that brings about the transitivity in connections; rather,

it is that only those links that are well supported (and hence form part of some triangles)

can be strong at equilibrium.

The aforementioned considerations bear on the important issue of social integration.

Specifically, they address the question whether an originally fragmented society – divided

into disjoint groups that neither exchange information nor exert any influence across them

– may persist in such a segmented situation even after cross-group links are created to avert

it. To illustrate starkly that such a state of affairs is indeed possible, we close this section

with the discussion of a simple example that, relying on Proposition 4, conveys some of the

main insights. These insights are then developed formally in the next subsection, where the

equilibrium (hence static) analysis carried out here is extended to a dynamic setting.

Consider a situation where the initial population N is partitioned into two groups, G1

= {1, 2, ..., n1} and G2 = {n1+1, n1+2, ..., n1+n2}, with equal cardinalities, n1 = n2 = n/2.

Suppose that, within each of these groups, the agents are placed linearly along a ring and

each of them pays attention (i.e. is connected in the attention network) to the two other

agents adjacent to her on either side. To be concrete, let us suppose that each agent

i ∈ G1 is connected with agents [i± 1]n/2 and [i± 2]n/2 (where [·]n/2 stands for the module

n/2 operator) and each agent j ∈ G2 is two-way connected to agents (n2 + [j ± 1]n/2) and

(n2 +[j±2]n/2). Of course, if those attention links were the only ones in place, the population

would be separated into two disjoint and completely unrelated sub-populations, no influence

whatsoever flowing across them. Thus, we shall suppose instead that each agent i ∈ G1 is

also connected to agents (n2 + [i± 2]n/2) from G2. (See Figure 3 for a schematic description

of the network considered.)

The network considered displays a total of n bilateral attention links established across

the two groups. However, despite the existence of so many cross-links, it is easy to see

that with the vanishing individual persistence (parametrized by η), the equilibrium weight

of any link between G1 and G2 also vanishes. More precisely, this weight is of order η as

this parameter approaches zero. To understand this conclusion, let us simplify the analysis

and focus on the limit case where η = 0, which implies that the learning process displays

no individual persistence. Then, it follows from Proposition 4 that, in order for any given
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Figure 3: Diagrammatic illustration of the attention network considered in the example proposed

here. The nodes in each group, G1 and G2, are linearly arranged along the corresponding ring. The

neighborhoods of typical nodes i and i+n/2 are depicted. Solid links connect agents within a group,

whereas dotted link connect agents of different groups.

cross link ij (i ∈ G1, j ∈ G2) to display some positive weight at equilibrium, it must be

that both i and j are influenced by some common agent k, different from both i and j. The

intuition here is that, when there is no opinion persistence, it is only through such third-

party influence that some correlation between i’s and j’s opinions can arise at equilibrium.

However, in the present example, none of the cross-group links has any third-party support

(cf. Figure 3), which implies that their weight at equilibrium must be zero if η = 0. 18

In fact, it turns out that an analogous line of reasoning applies for configurations of the

attention network that are much denser than the one considered in Figure 3. For example,

there is still no third-party support (and hence zero influence weight at equilibrium) for

the cross-group links of an attention network when, in addition to links already indicated,

each agent i is connected to agents i± (2 + 3r) + n/2 for r = 1, 2, ... until the moves along

the ring in the two opposite directions eventually meet. This amounts to a number of links

of order n2, comparable to that of the complete network. However, even such very high

density of connections (indeed, much denser than the one prevailing within each group) is

unable to induce any cross-group influence and the two groups remain isolated as far as

genuine communication is concerned.

What is the obstacle to integration in our example? There is a twin problem. On the one

hand, neither group has a dense local structure that can strongly support cross-group links.

On the other hand, the cross-group links themselves do not take advantage of whatever local

structure there is in each group – which is indeed weak but could also be exploited more

effectively (e.g. if two adjacent agents in one group were connected to the same individual

18 It can be readily checked that the only symmetric EIM A∗ where both G1 and G2 display some within-

group influence has, for all i ∈ G1, a∗ij = 1/4 for j = [i ± 1]n/2 and [i ± 2]n/2, while a∗ij = 0 otherwise. An

analogous statement applies to group G2.
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in the other group). In the following subsection, we study in detail the second problem

and hence choose to abstract from the first one. Specifically, we study a context that is

analogous to the present one but where the two groups are completely connected within.

There is, hence, no shortage of local structure where cross-group links might be embedded.

Then, it turns out that other aspects such as the relative size of each group, the depth K of

the learning process, or the topology of the cross-group links become important. As we shall

explain, another significant difference with the analysis that has been pursued here is that

our approach will not be static but dynamic. That is, it will not focus on whether or not

integrative (non-segmented) equilibria exist but whether segmented equilibria are robust,

i.e. dynamically stable. After all, as we know from Corollary 1, a segmented equilibrium for

two completely connected groups always exists, so a key question is whether these equilibria

are robust or not. For, even if integrative equilibria do exist, the segmented one may be

robust and hence difficult to escape from.

3.4 Bridging

We consider the problem of bridging and segmentation in the following stylized context.

The overall population N is partitioned into two groups, G1 = {1, 2, ..., n1} and G2 = {n1 +

1, n1 + 2, ..., n1 + n2}, with n1 + n2 = n. Each of these two groups is completely connected

in the attention network, while the initial opinions/signals of all agents are uncorrelated

with variances, common within each group Gq, respectively denoted by $q.

Initially, the prevailing influence matrix is of the form:

A0 =

(
Q(n1) 0n1×n2

0n2×n1 Q(n2)

)
, (13)

where 0nr×ns stands for a matrix of dimension nr × ns consisting of all zeros and Q(nr)

represents the uniform matrix with all entries equal to 1/nr. As stated in Corollary 1,

regardlessly of whether there exist attention links across the two groups or how many there

are, the influence matrix A0 defines an EIM. Thus, to fix ideas, let us suppose that no such

cross-group links initially exist. That is, the adjacency matrix L0 ≡ (l0ij)i,j∈N defining the

attention network satisfies:

l0ij = l0ji = 1⇔ i, j ∈ Gq (i, j = 1, 2, ..., n; q = 1, 2). (14)

Then, starting from this situation, suppose that some inter-group attention links can be

created, which leads to the following question: How should these two groups be connected

so as to destabilize what would otherwise remain a segmented equilibrium configuration? Or

reciprocally, we can ask: Under what conditions are those cross-group connections ineffective

in breaking the stability of the segmented configuration?
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In order to cast this question in mathematical form, we need to make explicit a dynamical

adjustment process for influence networks. In line with our discussion in Subsection 2.3 (see

our Twitter example there) and Subsection 3.1 (see the discussion following Proposition 1),

we posit the following discrete and synchronous adjustment process.

Let the stages of the process (i.e. separate learning spells) be indexed by τ = 0, 1, 2, ...

and denote by A(τ) ≡ (aij(τ))i,j∈N the influence matrix prevailing at a typical τ . Then, we

postulate the following law of motion:

aij(τ + 1) =
lij ρij(A(τ))∑
k∈N lik ρik(A(τ))

(i, j = 1, 2, ..., n; τ = 0, 1, 2, ...), (15)

or, using the compact vector-field notation in (7), we may simply write:

A(τ + 1) = F (A(τ)) (τ = 0, 1, 2, ...). (16)

Before stating formally our main result in this subsection, we introduce some notation. Let

the cross-group attention links to be added to the original ones be collected in the adjacency

(binary) matrix V ≡ (vij)i,j∈N such that

∀i, j ∈ N, ∀q ∈ {1, 2}, [i, j ∈ Gq ⇒ vij = 0]. (17)

The new attention network is given, therefore, by the adjacency matrix L = L0 + V , which

simply adds the new links across groups to the complete array of those pre-existing within

groups. Finally, for any two subsets of agents, M and M ′ (possibly singletons), we define

VM ′
M ≡

∑
i∈M,j∈M ′

vij , (18)

as the number of inter-group attention links from the set M to the set M ′.

Our main result in this subsection specifies sufficient conditions for the segmented config-

uration (13) to be asymptotically stable for the dynamical system (16) when the prevailing

attention matrix is L. Intuitively, this means that even if a “small” amount of commu-

nication started to flow across the new cross-group links, the adjustment process would

eventually lead to the original configuration where neither group has any influence on the

other. In this sense, such a segmented configuration can be viewed as dynamically robust.

As standard in the theory of dynamical systems, such local stability is assessed in terms of

the eigenvalues of the Jacobian matrix J (A0) ≡
(
∂Fij

∂ak`
(A0)

)
i,j,k,`∈N

of the vector field (7)

evaluated at A = A0.

Proposition 5 Consider the attention matrix L = L0 + V , where L0 is given by (14) and

V satisfies (17). Assume that the initial opinions are independent across agents with common

variances $q within each group Gq. Then, the largest eigenvalue in absolute value of the
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Jacobian matrix J (A0) is a convex combination of the elements from the following set:

Z ≡

n
i$jV Gj

i + nj$iV Gi

j + (K − 1)
(
$iV Gi

Gj +$jV Gj

Gi

)
ni
√
$i$jninj


{ij:vij=1}

, (19)

where K ≥ 1 is the depth of the learning process, VM ′
M is defined in (18), and Gi ≡ Gq, ni ≡ nq,

and $i ≡ $q if i ∈ Gq.

Proof. See Appendix.

Corollary 3 Under the conditions of Proposition 5, the EIM A0 is asymptotically stable for

the adjustment dynamics given by (15) if max{z ∈ Z} < 1.

The intuition for Proposition 5 and Corollary 3 is as follows. Given that in the segmented

configuration both groups, G1 and G2, display an internal pattern of influence that is

uniform, the correlation of behavior within them is almost perfect, even as some (small)

cross-group influence starts to flow. Then, the adjustment to the internal uniformity after

such (small) perturbation can be traced to the changes experienced by the weight associated

to cross-groups links, i.e. those in the set {ij : vij = 1}. These are, in a sense, a suitable

“base” to determine the overall effect of those perturbations. It follows, therefore, that the

change along the main eigenvector component, as measured by its corresponding eigenvalue,

can be obtained as the composition (i.e. convex combination) of the effects associated to the

different cross-group links. Then, given such a composed effect, the conclusion of Corollary

3 readily follows. In particular, if the impact along each of the contemplated dimensions is

lower than unity, so happens for their convex combination and thus a standard sufficient

condition for local stability obtains: the largest-modulus eigenvalue (which is real) is less

than unity.

In view of (19), it is worth noting that the stability/robustness of the segmented con-

figuration is favored, ceteris paribus, by the following:

1. low learning depth;

2. large and/or similar group sizes;

3. few cross-component links;

4. low number of triangles in the attention network that cover cross-component links.

The features considered in 1 − 4 accord well with intuition as to what should be the

factors hindering the establishment of influence across the two groups. Heuristically, the

considerations involved in each case can be understood as follows.
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1’ If the learning span is short (low K), the process does not allow for enough rounds of

interaction for the initial opinions to draw close together. In turn, this limits inter-

group correlation and, by homophily consistence, leads to low influence weights across

different groups.

2’ If the groups are large (high ni and/or nj), the internal (uniform) influence will tend

to offset the external influence channeled through the cross-group links. This effect

will be stronger the more similar the group sizes are.

3’ Each cross-group link is a potential channel of reciprocal influence between the two

groups. Increasing the number of such channels (i.e., increasing V Gi

Gj and/or V Gj

Gi )

reinforces the cross-group communication (opinion correlation) and, hence, supports

the weight of each separate links as a channel of influence.

4’ As we already know, the pattern of cross-group connections matters for equilibrium

influence. In particular, as neighborhood overlap enhances opinion correlation, a

cross-group link ij will gain equilibrium weight as i or/and j have more cross-group

links themselves (which form, then, cross-group triangles). With just one round of

learning, this number increases with V Gj

i and V Gi

j ; for longer learning spans, it is also

V Gi

Gj
that matters.

We close our discussion in this section by presenting three remarks that highlight some

interesting insights derived from Proposition 5.

Remark 2 (Bridging revisited) At the end of Subsection 3.3, we discussed a simple ex-

ample that illustrated the potential robustness of social segmentation in the face of (a large

number of) bridging links established between the disconnected groups of the population. That

example may have been useful but had a number of limitations. One of them was the static

(equilibrium) approach of the example, which contrasts with the fact that the robustness of

segmented equilibria is best addressed dynamically. A second limitation was that the sharpness

of our conclusions relied on a vanishing value of η, the parameter that modulates the opinion

persistence of individuals. Both of these aspects can be dealt with by relying on Proposition 5

– for not only the analysis is explicitly dynamic but the result is established for non-vanishing

opinion persistence (η = 1).

To concentrate our attention on the issue of bridging, let us make the same simplifying

assumptions as in the indicated example: both groups display the same size and variance of

initial opinions (n1 = n2 = n/2; $1 = $2 = $), and every learning spell involves just one

round (K = 1). Then, the set (19) boils down to,

Z ≡

{
V Gj

i + V Gi

j

n/2

}
{ij:vij=1}

. (20)
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Consider now any pattern of cross-group links V that satisfies:

∀i ∈ N,
∑
j∈N

vij < n/4.

That is, every agent in each group Gq is connected to less than half of the individuals in the

other group Gq′ , q
′ 6= q. It readily follows from (20) that for every element zij ∈ Z, associated

to the cross-group link ij, we have zij < 1. Proposition 5 implies, then, that the segmented

configuration is asymptotically stable and that this can happen even when the total number of

cross-group links is of order n2.

In contrast, there is the possibility of destabilizing the segmented configuration with much

fewer cross-group links if these are arranged differently. What matters is not just the number

of such links but the specific pattern in which they are arranged. As a simple illustration, let us

select two agents, i1 ∈ G1 and i2 ∈ G2, and suppose each of them is connected to all agents

in the other group (hence, there is a total of n − 1 cross-group links). Then, again referring

to (20), we find that zij ≥ 1 + 2/n for each cross-group link ij, which means that these links

suffice to destabilize the segmented equilibrium. And this, of course, is done with a total of

n− 1 cross-group links, a much smaller number than in the previous construction that allowed

a total number of those links to grow at the order of n2!

Remark 3 (Unrestricted cross-group communication) Suppose that the population

N is partitioned into two equally numerous groups, G1 = {1, ...., n2 } and G2 = {n2 + 1, ..., n},
for some even n ≥ 2. All initial agent opinions are independent and display the same variance

$ (= $1 = $2). Furthermore, the underlying attention network L ≡ (lij)i,j∈N is complete, so

that lij = 1 for all i, j ∈ N .

Under the described conditions, the set Z in (19) contains the common element

$n2/4 +$n2/4 + (K − 1)
(
$n2/4 +$n2/4

)
$n2/4

= 2K > 1. (21)

It then follows from Proposition 5 that the segmented EIM A0 is asymptotically unstable for

any learning depth K ≥ 1. The segmentation it induces is therefore bound to be destabilized

unless there exist some barriers to inter-group communication in the form of missing links in the

attention network L.

It should be emphasized, however, that (21) is a local condition that guarantees only that

small perturbations from the equilibrium influence matrix will typically bring the system away

from it. It does not necessary imply that, once the system is destabilized in this manner, the

adjustment dynamics (15) will lead the population to an integrated state involving cross-group

influence.19 An analogous word of warning is applicable to the interpretation of (21) below,

which identifies conditions for dynamic instability but in a quite different context.
19Interestingly, we find that such a transition towards integration does arise in practice for the specific

instances studied through numerical simulations.
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Remark 4 [The role of a leader] Suppose that the population N consists of two groups: on

the one hand, the singleton group G1 ≡ {1} consisting of the leader alone; on the other, the

group G2 ≡ {2, 3, ..., n} that includes the remaining n − 1 agents. Suppose that the leader is

influenced by no one – i.e. the underlying adjacency matrix L ≡ (lij)i,j∈N has l1i = 0 for all

i ∈ G2, while in the group G2, there are m(≤ n − 1) agents who pay attention to the leader.

For simplicity, let this set of followers be given by S = {2, 3, ...,m+ 1}. Then, the whole matrix

L can be characterized as follows:

∀i, j ∈ N, lij = 1 ⇐⇒ {[i, j ∈ G2] ∨ [(i ∈ {1, ...,m+ 1} ∧ j = 1)]}

Consider now an original configuration where the leader has no influence on the group G2 but

this group (which is completely connected in the attention network) displays a uniform pattern

of internal influence. This equilibrium situation is formalized by the EIM A0 given in (13) for

n1 = 1 and n2 = n − 1. Then, if we denote by λ ≡ m
n the fraction of followers in group G2,

a necessary condition for homophily-based adjustment to destabilize such an equilibrium is that

the common element of the set (19) exceeds unity. That is, we must have:

(n− 1)$1 + (K − 1)$1λ(n− 1)

(n− 1)
√
$1$2(n− 1)

=
1 + (K − 1)λ√

n− 1

√
$1

$2
> 1. (22)

The above inequality holds if, ceteris paribus, the learning time span is long enough (high K),

the variance (i.e. informativeness) of the signals received by the leader – the agent exerting all

the influence – is sufficiently high (large $1), the variance of the signals received by followers

is sufficiently low (small $2), the size of the group G2 on which the leader exerts (directly or

indirectly) some influence is small (low n− 1), and the fraction of those directly influenced by

the leader is large (high λ).

4 Conclusion

We have started this paper by studying a model of social learning on a given social network

that extends the classical one proposed by DeGroot (1974) in two relevant dimensions:

• opinions are multidimensional (and modeled as non-degenerate random variables);

• the length of learning spells (i.e. the number of learning rounds) is typically finite.

The above features lead to a context where, even under customary regularity conditions,

the learning outcome generally falls short of full consensus. This allows one to identify the

extent to which agents’ final positions correlate, depending on the nature of the initial

signals/opinions, the architecture of the network, and the length of the learning process.

In a such a richer learning environment, we addressed the main objective of the paper:

an endogeneization of the influence network that

(a) respects the communication restrictions imposed by an exogenous attention network;
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(b) is consistent with a notion of homophily that requires the strength of a relationship

(influence) to be proportional to the correlation of behavior (opinions).

An important consequence induced by the postulated homophily-based consistency is

that, in equilibrium, the strength of every link must be proportional to its support in

a suitably defined neighborhood. This has been then brought to bear on the important

issue of social integration, a social-network phenomenon with far-reaching consequences.

In particular, we have shed light on what features of the environment can make social

segmentation a robust phenomenon and, correspondingly, the approaches (e.g. the creation

of effective “bridges”) that would allow to overcome it.

Naturally, a proper welfare and policy analysis of the problem of social cohesion requires

a meaningful assessment of benefits and costs. This, however, was absent from our theo-

retical framework and represents one of the important avenues for future research. Indeed,

depending on how cohesion is defined, it may be the case that not always more of it is

better – for example, along certain dimensions too much integration can be detrimental to

the preservation of valuable diversity.

Finally, another important and somewhat related objective for future research is the

introduction of some extent of payoff-guided behavior into the learning environment. The

model we have proposed is purely behavioral and, in this sense, quite mechanical. Other

paradigms of learning that could be studied from an analogous perspective include, e.g.,

observational learning (Bala and Goyal, 1998), Bayesian learning (Gale and Kariv, 2003),

or a mixture of boundedly-rational and Bayesian learning (Mueller-Frank, 2014). It is

conceivable that when, as we have done for the modified DeGroot model, such alternative

forms of learning are combined with a homophily-based influence, the results will be quite

similar to those presented here. This overarching approach, however, raises the following

central issue to start with: what is the rationale for homophily? Is it, as many social

scientists suggest, a purely innate tendency of human beings that has been shaped by

natural selection? Or is it, instead, a behavior that has some payoff basis, at least in some

contexts and under certain circumstances? Addressing these and related questions must

obviously be a central concern in a properly normative analysis of the problem.

5 Appendix

Proof of Proposition 1: For a given (finite) learning depth K, adjacency matrix L and

the signal covariance matrix Σβ̃, the vector field F (A;K,L,Σβ̃) : (∆n−1)n → (∆n−1)n,

defined in (7), maps an n−dimensional stochastic matrix A into another n−dimensional

stochastic matrix (∆n−1 is an n−dimensional simplex). F (·) is continuous as it involves

only a finite number of continuous matrix operations when K <∞. As (∆n−1)n is compact

and convex, Brouwer fixed-point theorem implies that F has a fixed point A∗. For K →∞,
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we construct an EIM in the proof of Proposition 2 below. �

Proof of Proposition 2: If A∗ is an EIM for a fixed adjacency matrix L and signal

covariance matrix Σβ̃, then a∗ii > 0 because lii = 1 and ρii (A∗) = 1 for each i ∈ N . Hence,

A∗ must be aperiodic (e.g., Golub & Jackson, 2010). It is well known that for a connected

(i.e., irreducible), aperiodic and stochastic matrix A∗ each row of limK→∞(A∗)K is equal

to the left eigenvector of A∗ associated to the eigenvalue 1. Then, all correlations ρik (A∗),

computed by (4) for i, k ∈ N , are equal to one. Substituting unit correlations into the

definition (5) of EIM yields the claim, a∗ik = lik/
∑N

s=1lis for all i, k ∈ N . �

For the proof of Proposition 3, we need the following Lemma.

Lemma 1 For row-stochastic and strictly positive n × n matrices A ≡ (aik)i,k∈N and S ≡
(sik)i,k∈N such that A 6= Q(n), aii ≥ aik and aik/aii = aki/akk for all i, k = 1, ..., n,

δ(A) < δ(AS′), where δ(X) ≡ min
i,k

xikxki
xiixkk

.

Proof: As A, S are strictly positive and row-stochastic, it holds for all i, k = 1, ..., n,

min
s
ais ≤

∑n
s=1aissks = (AS′)ik ≤ max

s
ais = aii ⇒ (23)

min
s
ais ≤ min

s
(AS′)is ≤ (AS′)ii ≤ max

s
(AS′)is ≤ aii ⇒

min
s

ais
aii
≤ min

s

(AS′)is
(AS′)ii

, ∀i⇒ min
i,s

ais
aii
≤ min

i,s

(AS′)is
(AS′)ii

.

Note that aii = maxs ais > mins ais for at least one i. Otherwise, aii = ais for all i, s

which implies ais = 1/n as A is row-stochastic. This, however, would contradict A 6= Q(n).

Therefore, the inequalities in (23) are strict for at least one i. Then, the last equality in

(23) is also strict and it follows from it and from the symmetry condition aik/aii = aki/akk,

δ(A) = min
i,k

aikaki
aiiakk

= min
i,k

(
aik
aii

)2 = (min
i,k

aik
aii

)2

< (min
i,k

(AS′)ik
(AS′)ii

)2 ≤ min
i,k

(AS′)ik(AS
′)ki

(AS′)ii(AS′)kk
= δ(AS′).

�

Proof of Proposition 3: The proof that Q(n) is an EIM follows from the fact that

Q(n) = Q(n)′ = Q(n)K and Q(n)XQ(n) = const ∗ Q(n) for any matrix X. From (4)

follows then that ρik (Q(n)) = 1 for all i, k ∈ N . The substitution of unit correlations

into the definition (5) shows that Q(n) is an EIM for the completely connected attention

network L.

The difficult task is to prove that Q(n) is the unique connected EIM. First, we show that

any connected EIM A ≡ (aik)i,k∈N on completely connected L must be strictly positive. To
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see this, consider nodes i, j and k such that aijajk > 0,

aijajk > 0⇒ aij > 0⇒ ρij(A) = ρji(A) > 0⇒ aji > 0,

aijajk > 0⇒ ajk > 0⇒ ρjk(A) = ρkj(A) > 0⇒ akj > 0.

Then, even if signals are uncorrelated, x̃i(A) is positively correlated with x̃k(A) via x̃j(A),

ρij(A)ρjk(A) > 0⇒ ρik(A) > 0.

We obtain, therefore,

aijajk > 0⇒ aikaki > 0.

As A is connected, this argument propagates to all links in L. We conclude, therefore, that

all elements in the connected EIM A are strictly positive.

On the other hand, the condition (5) implies for the EIM A and the covariance matrix,

C ≡ (cik)i,k∈N ≡ AKΣβ̃(AK)′,

the following equalities,

aik
aii

=
aki
akk

= ρik(A) =
cik

(ciickk)1/2
⇒ aikaki

aiiakk
=
cikcki
ciickk

, ∀i, k ∈ N. (24)

The necessary condition for (24) can be expressed with the matrix operator δ(·),

δ(A) = δ(C), where δ(X) ≡ min
i,k

xikxki
xiixkk

for X ≡ (xik)i,k∈N . (25)

The following properties of δ(·) are easily verified,

δ(X ′) = δ(X), δ(cX) = δ(X), δ(D1XD2) = δ(X),

where X is an arbitrary matrix with positive entries, D1 and D2 are diagonal matrices and

c is a constant. By the last property, we obtain from (25),

δ(A) = δ(C) = δ(CD2) ≡ δ(AS′), (26)

where S′ ≡ AK−1Σβ̃(AK)′D2 and D2 is a diagonal matrix that normalizes the sum of each

column in AK−1Σβ̃(AK)′. Hence, S′ is a column-stochastic strictly positive matrix for any

K ≥ 1. In Lemma 1, we prove for strictly positive row-stochastic matrices S and A 6= Q(n)

such that aii ≥ aik and aik/aii = aki/akk for all i, k that δ(A) < δ(AS′). As this contradicts

(26), we conclude that only A = Q(n) can be an EIM for the completely connected L. �

Proof of Proposition 4: For the learning depth K ≥ 1, signal covariance matrix

Σβ̃ = σI (where σ > 0 and I is the identity matrix) and an n× n matrix A, the correlation

(4) is readily verified to be identical with the link support (11),

ρik(A) =

∑n
s=1 bisbks

(
∑n

s=1 b
2
is)

1
2 (
∑n

s=1 b
2
ks)

1
2

= ϕik(B), ∀i, k ∈ N, where B ≡ AK .
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Then, the condition (5) for an EIM A∗ can be written as,

a∗ij = lija
∗
iiρij(A

∗) = lija
∗
iiϕik((A

∗)K).

�

For the proof of Proposition 5 we need the following notation and lemmas:

Let σ = (σ1, ..., σn) and define I(σ) as an n × n diagonal covariance matrix of n IID

signals with the diagonal elements (I(σ))ii = σi > 0. For the learning depth K ≥ 1,

the n × n influence matrix A ≡ (aik)i,k∈N ≥ 0 and the binary adjacency matrix L ≡
(lik)i,k∈N ∈ {0, 1}n×n, we define

cov(A) ≡ AKI(σ)(AK)T , ρik(A) ≡ covik(A)√
covii(A)covkk(A)

, (27)

F̃ik(A;L) ≡ likρik(L ·A)∑n
s=1lisρis(L ·A)

, i, k = 1, ..., n,

where AB and AK = A...A are products of (compatible) matrices A and B, while A · B is

the Hadamard product, i.e., (A ·B)ik = aikbik. Note that F̃ik(A;L) is identical to Fik(A;L),

as defined in (7), when A ≤ L.

Further, let G1 = {1, ..., n1} and G2 = {n1 + 1, ..., n1 + n2} be two groups with n1 and

n2 nodes, n1 + n2 = n. For any i = 1, ..., n, let Gi = Gq, n
i = nq and $i = $q if i ∈ Gq

(q = 1, 2). Let

A0 ≡

(
Q(n1) 0n1×n2

0n2×n1 Q(n2)

)
, L0 ≡ sign(A0), I($) ≡

(
$1In1×n1 0n1×n2

0n2×n1 $2In1×n2

)
,

where, Q(nr) ≡ (qik(nr))
nr
i,k=1, qik(nr) ≡

1

nr
, $ ≡ ($1, ..., $1, $2, ..., $2).

Lemma 2 For an n× n matrix U ≡ {uij}i,j∈N and ik ∈ n× n,

dρik(A
0 + ωU)

dω
|ω=0 =

 ni$kUGk

i +nk$iUGi

k +(K−1)($kUGk

Gi +$iUGi

Gk )
√
$i$knink

, i, k : Gi 6= Gk,

0, i, k : Gi = Gk,
, (28)

where UM
′

M ≡
∑

i∈M,j∈M ′ uij .

Proof: We define the real matrix A(ω) ≡ A0 + ωU and the matrix-valued function

fK(ω) ≡ cov(A(ω)) = A(ω)KI($)(A(ω)K)′, (29)

with a recursive structure,

fK(ω) = A(ω)KI($)(A(ω)K)
′

= A(ω)A(ω)K−1I($)(A(ω)A(ω)K−1)′ (30)

= A(ω)A(ω)K−1I($)(A(ω)K−1)′A(ω)′ = A(ω)fK−1(ω)A(ω)′,

f0(ω) = I($).
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We use the product rule (h · g)′ = h′g + hg′ to compute the derivative of (30),

dfK(ω)

dω
= UfK−1(ω)A(ω)′ +A(ω)(

dfK−1(ω)

dω
A(ω)′ + fK−1(ω)U ′) (31)

= A(ω)
dfK−1(ω)

dω
A(ω)′ + UfK−1(ω)A(ω)′ +A(ω)fK−1(ω)U ′,

df0(ω)

dω
= 0.

We solve (31) by successive substitution and evaluate dfK(ω)
dω at ω = 0,

dfK(0)

dω
= A0df

K−1(0)

dω
A0 + Ψ + ΨT = ... = (K − 1)A0(Ψ + ΨT )A0 + Ψ + ΨT , (32)

where Ak(0) = A0 for any k = 1, ...,K, Ψ ≡ UfK(0) and

fK(0) = A0I($)A0 ⇒ fKik (0) ≡

{
$i/ni, Gi = Gk,

0, Gi 6= Gk.
(33)

From (32) and (33), it can be verified directly that

dfKik (0)

dω
=
ni$kUG

k

i + nk$iUG
i

k + (K − 1)($kUG
k

Gi +$iUG
i

Gk)

nink
. (34)

By applying the quotient rule (h/g)′ = (h′g − hg′)/g2, we obtain the derivative of the

correlation function,

dρik(A(ω))

dω
|ω=0 =

d(fKik (ω)/
√
fKii (ω)fKkk(ω))

dω
|ω=0 (35)

=


√

nink

$i$k

dfKik (0)
dω , i, k : Gi 6= Gk,

ni

$i (
dfKik (0)
dω − 1

2(
dfKii (0)
dω +

dfKkk(0)
dω )), i, k : Gi = Gk,

where we used (33) to substitute for fK.. (0). The formula (28) obtains then by substituting
dfK.. (0)
dω from (34). In particular, Gi = Gk implies $i = $k and ni = nk and all terms in (34)

cancel out in this case. �

Lemma 3 For binary n×n matrices V ≡ (vτω)τ,ω∈N and U st ≡ (ustτω)τ,ω∈N such that vτω = 0

if Gτ = Gω and ustst = 1, ustτω = 0 for τω 6= st,

d

dω
F̃ik(A

0 + ωU st;L0 + V )|ω=0 = (36) ni$k(Υst)G
k

i +nk$i(Υst)G
i

k +(K−1)($k(Υst)G
k

Gi +$i(Υst)G
i

Gk )

ni
√
$i$knink

, if vik = 1,

0, if vst = 0,

where Υst ≡ (L0 + V ) · U st.
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Note that the two cases in (36) are neither mutually exclusive nor collectively exhaustive

(but they are the only relevant ones for the proof of Proposition 5).

Proof: We define Λ ≡ (λik)i,k∈N ≡ L0 + V , Ast(ω) ≡ Λ · (A0 + ωU st) = A0 + ωΥst and

the normalization factor

ηi(ω,Λ) ≡
∑n

s=1λisρis(A
st(ω)), i = 1, .., n.

We note that ηi(0,Λ) =
∑

s∈Gi l0is · 1 = ni due to the fact that vis = 0 when s ∈ Gi (i.e.

Gs = Gi) and,

ρ(A0) = L0 =

(
1n1×n1 0n1×n2

0n2×n1 1n2×n2

)
. (37)

Then, we calculate the following derivative by applying the quotient rule,

dF̃ik(A
0 + ωU st; Λ)

dω
|ω=0 =

d

dω

λikρik(A
st(ω))

ηi(ω,Λ)
|ω=0 = (38)

λik
(ni)2

(
dρik(A

st(ω))

dω
ni − ρik(A0)

dηi(ω,Λ)

dω
)|ω=0,

where,
dηi(ω,Λ)

dω
=
∑n

s=1λis
dρis(A

st(ω))

dω
. (39)

For vik = 1 the definition of V implies Gi 6= Gk and, then, we have ρik(A
0) = l0ik = 0 and

λik = vik by (37). Then, (38) takes the form,

dF̃ik(A
0 + ωU st; Λ)

dω
|ω=0 =

vik
ni

(
dρik(A

st(ω))

dω
)|ω=0, (40)

which after substitution from (28) specializes to the expression in (36). In order to prove

(36) for vst = 0, we consider three mutually exclusive and collectively exhaustive cases.

1) vst = 0 and Gs = Gt and Gi 6= Gk: This is a special case of the expression in (36)

with Υst = U st and (Υst)G
k

i = (Υst)G
i

k = (Υst)G
k

Gi = (Υst)G
i

Gk = 0.

2) vst = 0 and Gs = Gt and Gi = Gk: Then, dρik(.)
dω |ω=0 = 0 by (28) and ρik(A

0, $,K) =

1 by (37). Hence, we obtain from (38),

dF̃ik(A
0 + ωU st; Λ)

dω
|ω=0 = − λik

(ni)2

dηi(ω,Λ)

dω
)|ω=0,

which vanishes after substitution from (39),

dηi(ω,Λ)

dω
=
∑n

s=1λis
dρis(.)

dω
=
∑

s:Gs=Gi1 · 0 +
∑

s:Gs 6=Gi0 ·
dρis(.)

dω
= 0.

3) vst = 0 and Gs 6= Gt: In this case, Υst = 0 and

d

dω
F̃ik(A

0 + ωU st; Λ)|ω=0 =
d

dω

λikρik(Λ · (A0 + ωU st))∑n
s=1λisρis(Λ · (A0 + ωU st))

=

d

dω

λikρik(A
0 + ωΥst)∑n

s=1λisρis(A
0 + ωΥst)

=
d

dω
F̃ik(A

0 + ωΥst; Λ)|ω=0 = 0.
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Proof of Proposition 5: For a vector valued function f , column vectors x, u and a

real number ω, the first order approximation of f at x is computed as,

f(x + ωu) ≈ f(x) + ω
∂f(x)

∂x
u⇒ d

dω
f(x + ωu)|ω=0 =

∂f(x)

∂x
u, (41)

where ∂f(x)/∂x is the Jacobian of f at x. In particular, for the vector ut such that utt = 1

and utν = 0 for all v 6= t,

d

dω
fi(x + ωut)|ω=0 = (

∂f(x)

∂x
ut)i =

∂fi(x)

∂xt
,

where ∂f
∂xu

t is the tth column of the Jacobian ∂f(x)/∂x. By the same token, in our context

we obtain for the n × n matrix U st ≡ (ustτω)τ,ω∈N such that ustst = 1 and ustik = 0 for all

ik 6= st,

d

dω
F̃ik(A

0 + ωU st;L0 + V )|ω=0 =
∂F̃ik(A;L0 + V )

∂ast
|A=A0 ≡ Jik,st, (42)

where ik ∈ n×n indexes the row and st ∈ n×n indexes the column in the n2×n2 Jacobian

matrix J ≡
(
∂F̃ij

∂ast

)
i,j,s,t∈N

. From (42) and Lemma 3, we obtain the relevant entries in J
and its transposed J ′ as illustrated in the tables below,

J ik,st =


vst = 0 vst = 1

vik = 0 0 ?

vik = 1 0 ≥ 0

⇒ J ′ik,st =


vst = 0 vst = 1

vik = 0 0 0

vik = 1 ? ≥ 0


(43)

Then, from the system of eigenvalue equations J ′e = λe for λ 6= 0 it follows that eik = 0

when vik = 0, where e = {eik}i,k∈N is an n2 × 1 eigenvector of J ′ with entries indexed

by ik ∈ n × n. Hence, in light of (43), only elements of J ′ik,st with vik = 1 and vst = 1

appear in the eigen equations for J ′. Therefore, for the computation of the eigenvalues and

eigenvectors of J ′, we can think of all entries J ′ik,st as equal to zero except when vik = 1

and vst = 1, in which case they are non-negative.

By the Perron-Frobenius Theorem, the largest eigenvalue of a nonnegative square matrix

is real and positive and has an associated nonnegative eigenvector. Hence, for the system of

eigen equations J ′e = λe, we have that e > 0 if λ > 0 is the Perron-Frobenius eigenvalue

of J ′ (and, hence, of J ). Then, we can write the sum of the eigen equations as,∑
ik:vik=1eik

∑
st:vst=1J

′
st,ik = λ

∑
ik:vik=1eik > 0. (44)

Dividing (44) by
∑

ik:vik=1eik shows that λ is a convex combination of the values in the set

{
∑

st:vst=1J
′
st,ik}ik:vik=1 = {

∑
st:vst=1J ik,st}ik:vik=1.
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For each ik such that vik = 1, we compute
∑

st:vst=1J ik,st by substituting for J ik,st from

(36) with Υst ≡ (L0 + V ) · U st = U st as vst = 1 (and, hence, Gs 6= Gt),

∑
st:vst=1

ni$k(U st)G
k

i + nk$i(U st)G
i

k + (K − 1)($k(U st)G
k

Gi +$i(U st)G
i

Gk)

ni
√
$i$knink

=
ni$kV Gk

i + nj$iV Gi

k + (K − 1)($kV Gk

Gi +$iV Gi

Gk )

ni
√
$i$knink

.
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