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Abstract

We study information acquisition and subsequent price competition in an environ-

ment where the cost of each firm is initially unknown and composed of two components,

private costs specific to the firm and costs common to all firms in the industry. In this

setting, firms choose high initial prices to soften future competition. Moreover, this

pricing distortion is exacerbated when firms only possess private information about firm

specific costs. This implies that sharing information about industry relevant costs, such

as aggregating cost information through a trade association, will lead to higher prices.

Additionally, when firms share information about common costs they have less incen-

tive to acquire information about firm specific costs which can lead to lower expected

profits for firms.

1 Introduction

Firms in durable goods markets are frequently imperfectly aware of their own costs of pro-

duction prior to market entry.1 While information improves over time during the production

process, prices are initially set based off firms’ forecasts about the cost of production. Firms

have an incentive to soften future competition with rival firms by choosing a high price

in the Bertrand setting [Mailath, 1989], or a large output in the Cournot setting [Bonatti

et al., 2017]. Moreover, Jeitschko et al. [2017] shows this strategic effect can reduce firms’

incentive to make precise forecasts prior to beginning the production process, leading to

∗NYU Stern; gkubitz@stern.nyu.edu
†UNC–CH; kyle.woodward@unc.edu
1That costs are imperfectly known can arise from, for example, learning by doing on the part of the firm’s

suppliers, cite here, or from a volatile external market for inputs.
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reduced welfare in the market. While past work has focused on these strategic incentives for

firm-specific cost information, firms often have information about industry-wide costs, e.g.

forecasted prices of common inputs, in addition to private production costs. Additionally, it

has been shown that the incentive to share cost information depends crucially on which type

of information it is.2 Despite this, the strategic effects of acquiring and sharing information

on the cost of production have not been studied in a setting where firms can distinguish

information on their private and common cost components.

In this paper, we study information acquisition and subsequent price competition in an

environment where the cost of each firm is initially unknown and composed of two com-

ponents, private costs specific to the firm and costs common to all firms in the industry.

We show that the pricing distortions which arise from dynamic pricing competition are less

severe in this setting than when firms only posses information about a private cost param-

eter. Moreover, the problem of initial underinvestment in information that stems from this

distortion is alleviated, leading firms to acquire a more efficient level of information prior to

production. The reverse implication of this is that when firms in the industry share common

cost information via a trade association, pricing distortions are exacerbated and the incentive

to acquire information prior to beginning production falls.

We consider firm competition that takes place over three stages. First, prior to beginning

the production process and setting prices, firms can expend resources to acquire information

about each cost component. The firms then engage in price competition over two periods.

Firms initially choose a price based on the information they receive in the acquisition stage.

After the first period of competition, each firm obtains full information of its own private

costs and the costs that are common to the industry, and uses observed first-period prices to

update its beliefs about the private cost component of its competitor. With this additional

information, firms again choose prices in the second stage of price competition.

We first show that there is a unique symmetric equilibrium in linear strategies of the two

period pricing game, given any level of information precision acquired by the firms. The

effects of information on price depend on whether goods are substitutes or complements.

When goods are substitutes information about common costs is weighted more heavily when

determining first period prices; when goods are complements information about private costs

is weighted more heavily when determining first period prices. The main force behind this

difference is firms’ responses to direct information about their competitors’ cost through

the common cost component. When firms sell substitutable goods, then prices are strategic

complements, and a high cost signal leads to higher expected demand. When firms are selling

2See Raith [1996], Sankar [1995] and Ackert et al. [2000]. For a survey of the information sharing literature
see Vives [2001]
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complementary goods, prices are strategic substitutes so a high common cost signal leads to

reduced expected demand.

A firm’s first period price reveals information about its cost structure, which its oppo-

nent can use in second period competition. This directly affects first period price selection.

Specifically, when competitors observe the firm setting a high price they believe that the firm

has a high expected cost of production. This causes the competing firms to set a higher price

in the second period, softening the price competition in this second period for the firm that

set a high price in the first period. Therefore, each firm has an incentive to over represent

their costs by choosing higher initial prices.

In the setting of two cost components, this high expectation of cost could stem from

the firm receiving a high signal about industry-common costs, firm-specific costs, or both.

Because only firm-specific information is uncertain in the second round, firms use the first

period price to update their beliefs about these costs specifically. Therefore the initial uncer-

tainty of industry relevant costs adds noise to the relationship between the first period price

and the private information about firm-specific costs. When firms share industry-common

cost information via a trade association prior to setting initial prices, private information

about industry relevant information disappears and first period prices become a clearer signal

of the firm’s private information about its idiosyncratic costs. This intensifies the incentive

to over-represent costs and results in higher expected initial prices.

Given the pricing equilibrium and resulting profits of the firms, we analyze the incentive

to acquire information prior to the two-stage competition. Firms can improve the precision

of their information by hiring a private consultant (for example) to give information on

both industry-common and firm-specific costs. Once firms have this information, we again

consider two settings: either the information stays private to each firm prior to the two stage

competition, or firms share industry-relevant information via a trade association. When firms

share information they have less incentive to acquire information about firm-specific costs;

additional precision of information leads to less expected profits in both periods of price

competition. In the initial stage of price competition pricing distortions are exacerbated,

reducing the variance of price choice relative to the available information and therefore

making this information less valuable to the firms.3 Moreover, initial prices fully reveal the

private information of the firm prior to the second period of competition. When industry

costs are not shared, initially acquired information about idiosyncratic costs persists and

remains valuable to firms in this second period.4

This paper generalizes the model in Jeitschko et al. [2017], allowing for initial uncertainty

3This effect is thoroughly discussed in Jeitschko et al. [2017].
4See Gal-Or [1986].
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and acquisition of information in both private firm-specific costs and common industry-wide

costs. One major technical difference to this model is the increased dimensionality of the

strategy space. Because private information in the initial stage of competition is of a higher

dimension than the action space, a fully separating strategy cannot exist and information is

not fully revealed to competing firms prior to the second round of competition. Therefore

private information persists into the second round of competition without the presence of

hidden actions as in the signal jamming literature (e.g., Mirman et al. [1993]) or adding

additional exogenous noise in later rounds (e.g., Mester [1992]).

The ability of firms to distort private information ties this paper to the literature on

information manipulation in oligopolistic competition. In Mirman et al. [1994] firms have

private information about a common demand parameter in a dynamic duopoly setting. It

is shown that when information has a negative net value, as is the case in both our setting

and in Jeitschko et al. [2017], firms decrease the informativeness of their strategic choice.

In supply schedule competition, Vives [2011] shows that an increase in correlation of costs

leads to larger strategic distortions, while a more precise public signal on the common value

component can alleviate these distortions. This is consistent with our result that the public

release of a common cost signal increases the incentive to distort information on the private

cost component. Additionally, Bernhardt and Taub [2015] examines the impact of private

information in common-valued and private-valued coefficients on both firm costs and market

demand showing that private value information distorts supply choice more heavily than

common valued information.

Lastly, this paper adds to the growing literature which evaluates the welfare impacts of

information acquired endogenously. It is shown in Colombo et al. [2014] that the optimal

precision of private information will decrease in the precision of publicly available common-

valued information in a general quadratic-Gaussian setting. In the context of Cournot com-

petition, Myatt and Wallace [2015a] show that firms will inefficiently acquire too much

information about uncertain demand and use inefficiently too little of the information when

making quantity choices. Additional work analyzes efficient use of acquired information and

its impact on social welfare, e.g. Angeletos and Pavan [2007] and Myatt and Wallace [2015b].

2 Model

Two firms, i and j, compete for market share over two periods t = 1, 2. Demand is linear in

prices, symmetric across firms, and time-independent. Firm i’s demand is given by

qi,t = a− bpi,t + epj,t.
5
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We assume that demand is weakly more sensitive to a firm’s own price than to its opponent’s,

so that |e| ≤ b. Each firm faces a constant marginal cost ci that is same in each period, so

profits are

πi,t = (pi,t − ci) qi,t.

Firms are initially uncertain about their marginal costs of production, but know that

costs are comprised of an idiosyncratic component θi and a common component ρ; their

constant marginal cost is the sum of the two components, ci = ρ+ θi. We assume that cost

components are joint-normally distibuted with zero covariance, so that θi

θj

ρ

 ∼ N


 µθ

µθ

µρ

 ,

 σ2
θ 0 0

0 σ2
θ 0

0 0 σ2
ρ


 .

Throughout we will denote the precision of the random variable x by τx = 1/σ2
x.

Play proceeds in two stages. In the first stage, each firm receives two noisy signals, si,θ

and si,ρ, of the values of their idiosyncratic and common costs, respectively. These signals

are normally distributed with uncorrelated error terms, and the error terms are uncorrelated

between firms. We model these signals as si,x = x + εi,x, where εi,x is normally distributed

with variance σ2
ε,x,i.

6 Upon the realization of their private signals, firms simultaneously select

prices pi,1 and obtain stage profits πi,1.

After first-stage profits are obtained, firms become perfectly informed of both the common

and their (individual) idiosyncratic cost components. Each also witnesses its opponent’s first-

stage price, but remains unaware of its opponent’s idiosyncratic cost component.7 Firms then

compete again by simultaneously selecting prices and obtain stage profits πi,2.

The game ends after the second stage, and ex post utility is the (undiscounted) sum of

stage profits,

ui (pi, pj) = πi,1 (pi,1, pj,1) + πi,t (pi,2, pj,2) .

We restrict attention to subgame perfect equilibria in linear strategies.

Analysis proceeds in three parts. We first determine properties of equilibrium in this base

model. Then, we allow firms to share information about their common cost component prior

to the two-stage competition. Lastly, we allow firms to acquire more precise information

5Unless otherwise specified, our equations and inequalities should be taken to be symmetric for agent j.
6For the majority of our results we will assume symmetry, so that σ2

ε,x,i = σ2
ε,x,j . Allowing for hetero-

geneity in the variance of the error term is essential when we discuss information acquisition.
7Since demand is a deterministic function of firm prices, the assumption that firms witness each others’

prices is sufficient to imply that they are perfectly informed of their own private cost ci; alternatively, if
they witness their own sales volume they will be perfectly aware of their opponent’s price. That they obtain
perfect knowledge of each of the components of ci = ρ+ θi is an additional assumption.
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about their costs, and compare the amount of information acquired in the setting where

firms share common cost information to the setting where they do not.

3 Equilibrium

We compute the pricing equilibrium in the two stage model by backwards induction. In a

subgame-perfect equilibrium second-period prices are best responses to available information.

However, even in an equilibrium where first period prices are strictly monotone in each signal,

it is impossible for private information to be fully-revealed as in a standard separating

equilibrium as private information is two-dimensional while actions are one-dimensional and

monotone in information. Residual uncertainty in the second stage is an important feature

in our model, affecting firms’ first-period pricing through their ability to distort publicly-

available information about their costs.

3.1 Second period pricing

In the second period, each firm knows its own marginal costs precisely, but knows only the

distribution over its opponent’s costs. Letting F j(·; pi,1, pj,1, ρ) ≡ F j be the distribution

of firm j’s second period price conditional on firm i’s available information,8 the profit

maximization problem is

max
p

∫
(p− ci) (a− bp+ ex) dF j (x) .

Lemma 1. Firm i’s optimal second period price is

p?i,2 =
1

2b

(
a+ bci + eE

[
p?j,2
∣∣ ρ, pi,1, pj,1]) .

Firm i’s maximum second period expected profit is

π?i,2 =
1

4b

(
a− bci + eE

[
p?j,2
∣∣ ρ, pi,1, pj,1])2 .

Thus firm i’s second period price is an affine function of the demand intercept, its (known)

cost ci = ρ + θi, and its expectation over firm j’s second period price. Profits then have a

standard quadratic form.

8Firm i also knows θi, si,θ, and si,ρ, but these offer no payoff-relevant information in the second stage
(beyond θi, ρ, and pi,1) and may be ignored.
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Lemma 2. In any equilibrium, expected second period prices of a firm given publically avail-

able information are

E
[
p?j,2
∣∣ ρ, pi,1, pj,1] =

1

4b2 − e2
(
(2b+ e) a+ 2b2E [cj| ρ, pj,1] + beE [ci| ρ, pi,1]

)
,

which result in the following expected second period profits:

π?i,2 =
1

4b

(
1

4b2 − e2

)2 ((
4b2 + 2be

)
a− 4b3ci + (E [ci| ρ, pi,1]− ci) be2 + 2b2eE [cj| ρ, pj,1]

)2
.

Lemma 2 connects firms i’s expected second period profits to its first period price. These

profits increase in E[ci|ρ, pi,1], the expectation of firm i’s cost given information available

to firm j in the second period. Therefore firm i has an incentive to over-represent its cost,

leading firm j to increase its second period price, softening competition for firm i.9

3.2 First period pricing

First period prices are set to optimize the sum of profits over two periods. Although first

period prices have no direct effect on second period profits, firm i’s price affects firm j’s

beliefs regarding firm i’s costs. This is shown directly in Lemma 2, where pi,1 enters only in

E[ci|ρ, pi,1].
Firm i’s first period profit maximization problem is

max
p

E [πi,1| si,ρ, si,θ] + E
[
π?i,2
∣∣ si,ρ, si,θ] = max

p
E
[
(a− bp+ ep̂j,1) (p− ci) + π?i,2

∣∣ si,ρ, si,θ] .
A marginal increase in first period price affects first period profits in a standard way, and has

an additional effect on second period profits by manipulation of the opposing firm’s second

period beliefs which changes second period price choices. This gives Lemma 3.

Lemma 3. Optimal first period prices are given by

p?i,1 =

(
1

2b

)
E [bci + a+ ep̂j,1| si,ρ, si,θ]

+ e

(
1

2b

)2

E
[(
a− bci + eE

[
p?j,2
∣∣ ρ, p?i,1, p̂j,1]) ∂

∂pi,1
E
[
p?j,2
∣∣ ρ, p?i,1, p̂j,1]∣∣∣∣ si,ρ, si,θ] .

We constrain attention to equilibria in pricing strategies that are linear in the expected

9This describes the reaction of firm j when the firms are selling substitutes, e > 0. When e < 0, a higher
value of E[ci|ρ, pi,1] leads to a lower p∗j,2 which still increases π∗i,2. When e = 0, the price and profit equations
reduce to the standard monopoly model.
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value of each cost component.10 A linear first period price can be expressed as

pi,1 = pi,0 + E [θi| si,θ] pi,θ + E [ρ| si,ρ] pi,ρ.

Under linear strategies, each firm’s first period price choice is a normally distributed

random variable from the perspective of the other firm. Therefore, (ci, ρ, pi,1) are distributed

joint-normally, which implies that E[ci|ρ, pi,1] is linear in pi,1. Moreover, the effect of an

increase in firm i’s first period price on firm j’s second period beliefs, and hence second

period price, is constant and independent of the level of price. Conditioning beliefs on this

relationship gives Lemma 4.

Lemma 4. The marginal effect of firm i’s first period price on firm j’s expected second

period price is

∂

∂pi,1
E
[
p?j,2
∣∣ ρ, pi,1] =

be

4b2 − e2
κi,

where κi ≡
∂

∂pi,1
E [ci| ρ, pi,1] =

σ2
θ τ̄s,θ,ipi,θ

σ2
s,ρτ̄

2
s,ρ,ip

2
i,ρ +

(
σ2
θ + σ2

s,θ,i

)
τ̄ 2s,θ,ip

2
i,θ

and τ̄s,x,i =
τs,x,i

τx + τs,x,i
.

The term κi captures the relative informativeness of firm i’s first period price regarding

the its idiosyncratic cost component θi, the remaining source of asymmetric information in

the second period when ρ is commonly known. Despite observing ρ, firms do not observe

each other’s first period signal on the common cost component, si,ρ. Because the first period

price depends on the realization of si,ρ, it can be thought of a noisy signal of si,θ, Therefore

the informativeness of the price in determining θi depends not only on the variance of the

price relative to si,θ but also relative to si,ρ.
11

For x ∈ {ρ, θ}, τ̄s,x,i is the relative contribution of the normally distributed noise in firm

i’s signal around the true parameter x, to the precision of the signal si,x. When signals are

very noisy, τ̄s,x,i will be close to zero; when signals give a more precise prediction of the true

cost parameter, τ̄s,x,i will be close to one. When signals are more precise, they have a larger

role in the formation of expectations over the cost parameters.

The term τ̄s,x,ipi,x is the derivative of first period price with respect to si,x, and affects

the informativeness of the first period price about the firms cost. Therefore the choice of

strategy in the first period for a given level of information precision will directly impact the

10This forces each firm to commit to using information about each cost component at a fixed level for all
possible signals, (si,θ, si,ρ), it may receive. As we show, these strategies are best responses to the opponent’s
linear pricing rule, even allowing for nonlinear pricing rules, when the firm has received its private signals.
It is possible that there exist equilibria in nonlinear pricing rules.

11Note that σ2
ρ does not appear in the denominator of κi since ρ is commonly observed.
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value of κi. Specifically, as either pi,θ or pi,ρ increases, κi decreases. If a firm increases pi,x

while precions remains constant, it is increasing the variance of price and therefore changes

in price will be less informative of the underlying primitives of the model. Moreover, the

incentive constraints of the equilibrium strategy in the first period depend on the value of

κi.
12 This fixed point problem is expressed in the single-variable equation in Proposition 1.

Importantly, since pricing strategies are not observed, κi is not affected by firm i’s selection

of price; it is determined by the pricing strategy the firm is believed to be following.

Proposition 1. There exists a unique symmetric equilibrium in linear pricing strategies.

The equilibrium strategies are determined by the value of κ in equilibrium which satisfies the

following single variable equation:

κ =
σ2
θ τ̄s,θpθ

σ2
s,ρτ̄

2
s,ρp

2
ρ +

(
σ2
θ + σ2

s,θ

)
τ̄ 2s,θp

2
θ

,

subject to pθ =
1

2 + βκ
and pρ =

1−
(
b−e
2b−e

)
βκ

2− e
b
τ̄s,ρ − 1

2
(1− τ̄s,ρ) β2κ2

,

where β = e2

4b2−e2 .

There are two strategic effects we can identify in the first period prices. First, due to the

correlation of one cost signal and the independence of the other signal, firms may want to act

more heavily on one of these signals than the other if they prefer to have their prices correlated

in the first period. Additionally, firms benefit from having private information in the second

period and therefore prefer to not reveal precise information about their idiosyncratic cost

term. The implications of the first effect are in Proposition 2 and those of the second effect

are in Proposition 3.

Proposition 2. In equilibrium, pρ < pθ when goods are complements (e < 0) and pρ > pθ

when goods are substitutes (e > 0). pρ = pθ when markets are independent (e = 0).

When e > 0, so that goods are substitutes, firms’ first period prices are more sensitive

to information on the common cost component than to information on their idiosyncratic

cost component. If a firm receives a high signal on the common cost component this often

implies the other firm will set a high price, increasing demand and making it optimal to

further increase price. When e < 0, so that goods are complements, prices are strategic

substitutes and will not respond strongly to the common cost signal. When e = 0, so that

there are no cross-firm demand effects, there is no need to either adjust for the opponent’s

12Note that a deviation does not indicate a specific misreport of marginal cost but rather an iso-information
curve of feasible si,ρ, si,θ. These iso-information curves depend on the value of κi.
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price and information about each cost component affects first period prices identically. More-

over, in the monopoly case there will be no attempt to conceal information regarding cost.

However, in general the information conveyed by first period prices will affect second period

profits. Proposition 3 illustrates firms’ incentives to not reveal too much information on

their idiosyncratic cost component.

Proposition 3. The equilibrium values of pθ and κ are inversely related: pθ increases when

κ decreases and vice versa. Additionally, pθ is decreasing and κ is increasing in τ̄s,θ, and

there is a τ ? such that for all τ̄s,ρ > τ ?, κ is increasing and pθ is decreasing in τ̄s,ρ, and for

all τ̄s,ρ < τ ?, κ is decreasing and pθ is increasing in τ̄s,ρ. When e > 0, τ ? > 1/2 and when

e < 0, τ ? < 1/2.

When τ̄s,θ is close to one, signals relatively precise information about θi. To maintain the

strategic advantage of private information, the firm will use less of the information from a

precise signal when determining first period price. If this signal is not precise, then even if

the price fully reflects the information in the signal, it will still maintain private information

in the second period from learning the true value of θi.

The presence of uncertainty on the common component of cost adds noise to the relation-

ship between first period price and the signal on idiosyncratic cost. When this relationship

is more noisy, the price reveals less information about the idiosyncratic signal, allowing the

firm to use this information in its pricing decision without revealing too much information.

If the signal about the common cost is relatively imprecise, τ̄s,ρ close to 0, then firms do

not learn much information from this signal, and relatively little noise is added to this re-

lationship. Additionally, if the signal is very precise, τ̄s,ρ close to 1, then when firms learn

the true value of ρ in the second round, they will learn, with little error, what signal si,ρ

their opponents received and will be able to tease apart the noise in the pricing strategy.

Therefore an intermediate level of precision τ̄s,ρ on signal si,ρ will maximize pθ for a given

value of τ̄s,θ.

In general the incentives to hide idiosyncratic cost information leads firms to be less

responsive to their idiosyncratic cost signal than is optimal in a one-stage game (without

the informational channels implied by our two-stage model), so relaxing signal jamming

incentives leads to an increased sensitivity of price to information on the idiosyncratic cost

component.

3.3 Sharing industry relevant information

We now consider the effect of the firms sharing information about costs through a trade

association. We assume that signals about the common cost component are shared, while
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those of firm’s idiosyncratic shocks are not. Information shared via a trade association is

that which is relevant to the production process of all firms, e.g. input costs, and firms prefer

to maintain private information about idiosyncratic costs.

When firms share their signals about their common cost component they will have the

same expectation about this parameter. This simplifies the two stage competition model to

a generalization of the single cost component model in Mailath [1989] and Jeitschko et al.

[2017]. While there are still two cost components, the informational structure is simplified

so that firms posses private information about their only idiosyncratic cost components;

the remaining uncertainty regarding the common cost component is common to both firms.

While the optimality conditions look similar in this setting, the equilibrium pricing strategies

in the first period fully reveal the private information of each firm. We briefly outline the

significant differences from the previous section.13

In the second period the information that is available to each firm now includes sρ =

(si,ρ, sj,ρ). The new first order conditions are given in Lemma 5.

Lemma 5. Firm i’s optimal second period price is

pci,2 =
1

2b

(
a+ bci + eE

[
pcj,2
∣∣ ρ, p1, sρ]) .

Firm i’s optimal first period price is

pci,1 =

(
1

2b

)
E
[
bci + a+ epcj,1

∣∣ sρ, si,θ]
+ e

(
1

2b

)2

E
[(
a− bci + eE

[
pcj,2
∣∣ ρ, sρ, p1]) ∂

∂pi,1
E
[
pcj,2
∣∣ ρ, sρ, p1]∣∣∣∣ sρ, si,θ] .

In a linear equilibrium, the first period price is pci,1 = p0,c + pθ,cE[θi|si,θ] + pρ,cE[ρ|sρ].
Because sρ and pi,1 are publicly observable, then in equilibrium, the value of si,θ can be

inferred by competing firms. Therefore the expectation of each firm’s cost in the second

period given publicly available information is E[ci|ρ, sρ, pi,1] = ρ + E[θi|si,θ], where si,θ can

be determined from the first period price. Moreover, an increase in the first period price will

increase this expectation by the inverse of the equilibrium coefficient pθ,c. The effect of firm

i’s first period price on firm j’s second period price takes into account this informational

parameter as well as effects on demand,

∂

∂pi,1
E
[
pcj,2
∣∣ ρ, pi,1] =

be

4b2 − e2
κc, where κc ≡ ∂

∂pi,1
E [ci| ρ, sρ, pi,1] =

1

pθ,c

13For a more through discussion of the simplified model, see Jeitschko et al. [2017].
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In the unique linear equilibrium, pθ,c is strictly less than pθ. Therefore firms use less

idiosyncratic information in their first period price choice once they have shared common

cost information.

Proposition 4. In the unique equilibrium in linear pricing strategies the coefficient on id-

iosyncratic information is less than the corresponding coefficient in the equilibrium without

information sharing:

pθ,c =
1− β

2
≤ pθ.

This inequality is strict when e 6= 0. Moreover, the coefficient on common cost information

is larger, pρ,c ≥ pρ, when the firms are selling substitutes (e ≥ 0).

We can similarly compare the informativeness of first period price about the underlying

cost before and after the firms share information on their common cost component. Because

pθ,c ≤ pθ,

βκ =
1− 2pθ
pθ

≤ 1− 2pθ,c
pθ,c

=
β

pθ,c
= βκc ⇐⇒ κ ≤ κc.

Following from Proposition 4, this inequality is strict when e 6= 0.

Once firms have shared common cost information, firms’ second period prices are more

responsive to the price choices in the first period. In this setting, it is easier to soften future

competition and therefore firms have a greater incentive to choose a higher first period price.

The increase in expected price imposes a first order negative effect on consumer welfare in

the market.

Proposition 5. Expected first period prices are higher when firms share signals about com-

mon cost information, E[pi,1] ≤ E[pci,1]. Moreover, expected second period prices are the same

regardless of firms sharing information or not.

From the first order conditions in each case, it is clear that the only differences in deter-

mining the optimal price is the expected price by the competing firm in the second period

and the rate at which a first period price increase by a firm affects this second period price by

the competitor. It is shown that this rate of increase is higher in the case where firms share

common cost information. The expectation of the second period price by the competing firm

must be the same in either case. This stems from the best response function of each firm

being linear in the beliefs about the competing firms costs. On average, the beliefs must be

correct in equilibrium and therefore the expected price will also be the same.
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4 Information acquisition

We now consider the case where firms can independently pay to improve their estimates of

their individual cost components. For consistency with Section 4.2, we consider this as a

problem of investing in a reputable outside research consultant: each firm pays its consultant,

who returns a more or less detailed report on the state of the components of marginal cost.

In our model where firms pool information, the consultant pools the research resources of

the individual firms to generate a more informative signal of the state of the world; in this

case, the consultant acts as a trade association. Thus the “consultant” language helps to

bridge the divide between the standalone and pooled research models.

The consultant uses the payment to perform research, where greater payment improves

the quality of the research. Conceptually, the precision of the firm’s signals is increasing in

the transfer to the consultant. As we are interested in comparative statics and not analytical

solutions to the problem of information acquisition, we do not explicitly model costs in the

firms’ profit functions.14 Because there are decreasing returns to informational precision

(Lemmas 7 and 9), any convex cost is sufficient for our results; decreasing marginal benefits

in precision point in the same direction as increasing marginal costs, and there is a finite

level of precision which is optimal.15

Play proceeds as follows: in stage zero, firms pay consultants and consultants provide the

firms with (separate) signals of their idiosyncratic and common cost components. Precisions

are chosen simultaneously and are not publicly observed. In a symmetric equilibrium, the

level of precision of each firm will be known prior to competition with τi,x = τj,x for x = θ, ρ.

Therefore stages one and two are exactly as in Section 3, with the caveat that the information

obtained in these stages does not arrive from an exogenous source but from the consultants

paid in stage zero. In order for this two-part analysis to be an equilibrium in the three-

stage game, an unobserved deviation in the acquisition stage must not benefit a firm in the

competition stages. Application of the envelope theorem implies that a marginal change

in precision would not affect the optimal strategy choice of either firm in the competition

stages.

We continue our analysis of the linear pricing equilibrium obtained in Section 3, where

pi1 = pi0 + piθE [θi| si,θ] + pi,ρE [ρ| si,ρ] .
14We do implicitly assume that costs are symmetric, but this is not essential.
15Decreasing marginal returns and increasing marginal costs frequently imply unique optima. In this case,

marginal returns are determined by believed investment in precision while actual investment is unobservable.
We discuss this at length below. Subject to believed investments, there is a unique level of investment which
is optimal. In equilibrium these two must be equal.
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The price coefficients pi0, piθ, and piρ each depend on the precisions τi,ρ and τi,θ. Firm i’s

stage-zero objective is

max
τi,θ,τi,ρ

E [E [πi,1| si]] + E [E [πi,2| si]]− c (τi,θ, τi,ρ) .

As mentioned, the precise form of the cost function is unimportant as long as it is convex, and

we will ignore the costs of precision. The additive separability of the firm’s profit function

allows us to independently analyze the effects of precision on first and second stage profits.

Importantly, the unobservability of precision investments and the subsequent selection

of prices allow for the application of the envelope theorem; then we can constrain attention

to only terms which vary directly with τi,x and can ignore the effect on subsequent choice

variables. Second period profits also depend on the relative informativeness of first period

prices, given by κi, which depends on τi,x. Note that deviations in τi,x do not directly affect

second period profits, and enter only through κi and firm j’s beliefs about firm i’s costs.

Because deviations in τi,x are not observable, starting at any putative equilibrium κi will

remain constant even under changes in τi,x. Informational precision also does not affect first

stage profits except through the reduction in variance and changes in price parameters, but

the latter can be ignored by application of the envelope theorem. Then our analysis of the

effect of precision on the firm’s expected profits can focus only on the precision terms that

appear directly in profits, and can ignore all other terms.

4.1 Expected profits

First stage profits can be represented compactly in terms which vary directly with the choice

of precision τi,x and composite remainder terms which vary only indirectly through τi,x, and

hence (by the envelope theorem) may be ignored during optimization.

Lemma 6. There is a function Ci : R6 → R varying with first-stage price coefficients and

independent of τi such that first-stage profits are given by

E [πi,1] =

(
(1− piθ) piθτi,θ

(τi,θ + τθ) τθ

)
b+

(
(1− piρ) piρτi,ρ

(τi,ρ + τρ) τρ

)
b−

(
(1− piρ) pjρτi,ρτj,ρ

(τi,ρ + τρ) (τj,ρ + τρ) τρ

)
e+ Ci.

16

First stage profits respond to precision of the two components of marginal cost in a simi-

lar way with respect to own demand (the terms postmultiplied by b), but the response differs

16The arguments to Ci are omitted for compactness; the equation in Lemma 6 should be written with
Ci(pi0, piθ, piρ, pj0, pjθ, pjρ). As discussed earlier the dropping of these arguments is unimportant, as Ci does
not vary directly with τi and thus will be ignored when optimizing over the choice of precision.
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with respect to cross-firm demand (the term postmultiplied by e). To a first approximation,

the precision of the informational signals affects the opponent’s payoffs only through infor-

mation on the common cost component; increasing this precision will increase the correlation

in first-period prices, and decreasing this precision will reduce the correlation in first-period

prices.

Lemma 7. The marginal changes in first-stage profits with respect to the precision τi,θ and

τi,ρ are

∂

∂τi,θ
E [πi,1] =

(
(1− piθ) piθ
(τi,θ + τθ)

2

)
b; (1)

∂

∂τi,ρ
E [πi,1] =

(
(1− piρ) piρ
(τi,ρ + τρ)

2

)
(b− τ̄j,ρe). (2)

Because all involved terms are positive, it is immediate that when goods are complements

(so that e < 0) first stage profits respond more strongly to precision on the common cost

component than to the idiosyncratic cost component (holding all else fixed); when goods

are substitutes (so that e > 0) first stage profits respond more strongly to precision on the

idiosyncratic cost component than to the common cost component. As previously discussed,

when goods are independent (so that e = 0) we have piθ = piρ, implying that first-stage

profits respond identically to information on either cost component. If the precisions of the

underlying variables θi and ρ are not identical, first-stage profits will respond more strongly

to increases in precision of the signal of the less precise underlying variable.

Importantly marginal profit of a deviation in precision is completely determined by the

deviation’s effect on first period profits. This follows from three observations. First, the

envelope theorem implies that precision’s effect on profits via its effect on prices can be

ignored. Since prices are optimally selected subject to precision the derivative of profit with

respect to prices is zero, and this term vanishes. Second, precision has no effect on the

firm’s own inferences in the second period. Because cost parameters are perfectly observed,

if precision did affect the firm’s inferences it would need to affect the conditional expectation

of its opponent’s costs given first period prices and the known value of the common cost

parameter ρ. Since investment is unobservable the opposing firm’s strategy is unchanged,

and all inferences remain unchanged. Third, and relatedly, investment in precision does not

affect the opposing firm’s second-period pricing strategy. Because precision is unobservable

the opposing firm has no way of knowing that its inferences are incorrect and will not alter

its strategy.17

17Note that while maginal deviations in investment in precision cannot affect second-period profits, differ-
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Proposition 6. Conditional on τi,ρ, all equilibria in the private information acquisition

model have a unique and symmetric choice of τi,θ.

Proof. We have already seen (in Proposition 1) that conditional on precision there is a

unique equilibrium in the pricing game. With information acquisition, opponent precision

is unobservable. Fixing believed equilibrium inference κ̂, it is the case that the firm’s pric-

ing strategy is independent of its level of precision investment: prices are functions of the

conditional expectations of cost parameters, and the entire effect of precision is captured in

the conditional expectation. Lemma 6 implies that there are strictly decreasing marginal

returns to precision, and since the cost of precision is convex it follows that there is a unique

level of precision, and hence unique pricing strategy, taking as given believed equilibrium

inference κ̂.

Then equilibrium will be nonunique only if there are two equilibrium inference levels κ̂

and κ̂′, leading to distinct precision and pricing decisions. Suppose κ̂ is an equilibrium belief,

and κ̂′ > κ̂. By Proposition 3, p′θ < pθ. Since pθ < 1/2 in any equilibrium, Lemma 7 implies

that the marginal return to precision is lower under belief κ̂′ than under belief κ̂. Then

τ ′i,θ < τi,θ. Then Proposition 3 implies that κ̂′ < κ̂, a contradiction. Then there is a unique

level of informativeness κ̂ and unique choice of τi,θ.

Corollary 1. τi,θ is increasing in τi,ρ when τ̄i,ρ is close to zero, and decreasing in τi,ρ when

τ̄i,ρ is close to one.

Corollary 1 follows from equation (1). Proposition 3 states that pθ is decreasing in τi,ρ

when τ̄i,ρ is large, and increasing in τi,ρ when τ̄i,ρ is small. Then since pθ ≤ 1/2 for all precision

levels, the marginal utility gain from a small increase in τi,ρ decreases when τ̄i,ρ is large and

increases when τ̄i,ρ is small. Then improved precision on the common component leads to

decreased precision on the idiosyncratic component when common component precision is

already high, and leads to increased precision on the idiosyncratic component when common

component precision is low.

Intuitively, when common component precision is high it is difficult for the firm to mask

its private signal. Further increasing the precision on the common component makes this

even more difficult, and reduces the returns of acquiring private information as the opponent

will learn of this information prior to the second period. In the other direction, when the

signal on the common component is relatively imprecise, increasing this precision captures

some available profits through improved information — absent signaling incentives, reducing

variance is good for the firm. Then since the signal is still relatively imprecise, the firm can

ent levels of believed investment will typically generate different second-period profits.
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still confound its opponent by the use of signaling in its pricing strategy and the information

on the idiosyncratic term will be more valuable in the second period

4.2 Sharing industry relevant information

We now develop our model of information acquisition so that there is a single technology re-

sponsible for improving information on the common cost component. Consider, for example,

a research consultant that takes payment in exchange for producing reports. If products rely

on a common input factor forecasts of the market for this input are equally valuable to either

firm. The consultant acts as a pooling resource, producing forecasts from the total payments

that it receives from either firm. At a high level this is akin to the consultant releasing a

public whitepaper containing its market forecasts, or a trade association producing an article

in an industry journal.

To find the optimal precision of signal we find the effect of an increase in precision of

both common and private cost components on each of the two periods of competition. Since

an increase in precision does not affect the expected value of each component of the cost, it

will not affect the expected prices of either firm in either period of competition. Therefore

the precision will only effect the variance and correlation of firms’ prices in each period.

Increasing the precision of the private cost component of a firm will increase the variance

of that firm’s first period price choice and lead to higher profits in that period. On the other

hand, since all information will be revealed to the competing firm through the first period

price, this will increase the information available to that firm in the second period. When

the firms sell substitutes or complements, this will increase the correlation of prices in this

round which leads to lower second period profits. For a more thorough discussion of this

point see Jeitschko et al (2017).

Increasing the precision of the common cost component will both increase the variance of

first period price choices and the correlation of strategies. Again, the increase in variance will

have a positive effect on ex-ante expected payoffs while a increased correlation will decrease

these payoffs. The level of precision will have no affect on the second period profits of either

firm, as each firm will know the true value of ρ at that time.

Lemma 8. There is a constant Ci,c which is independent of τi such that first-stage profits

are given by

E [πi,1 (sp, si,θ)| τε,ρ, τi,θ] =

(
(1− pθ) pθτi,θ
(τθ + τi,θ) τθ

)
b+

(
(1− pρ) τi,ρ
(τρ + τi,ρ) τρ

)
(b− e) + Ci,c.
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Lemma 9. The marginal changes in first-stage profits with respect to the precision τi,θ and

τc,ρ are

∂

∂τi,θ
E
[
πci,1
]

=

(
(1− pθ,c) pθ,c
(τi,θ + τθ)

2

)
b,

∂

∂τc,ρ
E
[
πci,1
]

=

(
(1− pρ,c) pρ,c
(τc,ρ + τρ)

2

)
(b− e) .

Lemma 10 (Unique equilibrium). There is a unique equilibrium in the pooled information

model.

Proof. This follows directly from Lemma 9 and Proposition 4, which states that the unique

equilibrium choice of pθ,c and pρ,c do not depend on τi,θ and τc,ρ.

Proposition 7 (Relative value of information). The marginal benefit of acquiring additional

information in the private cost component is lower when information about the common cost

component is gathered by the trade association compared to when common cost information

is acquired privately by the two firms,

∂

∂τi,θ
E [πi,1] >

∂

∂τi,θ
E
[
πci,1
]
.

Proof. Comparing marginal benefits in the first period

∂

∂τi,θ
E [πi,1] =

(
(1− piθ) piθ
(τi,θ + τθ)

2

)
b, and

∂

∂τi,θ
E
[
πci,1
]

=

(
(1− pθ,c) pθ,c
(τi,θ + τθ)

2

)
b.

From Proposition 4, pci,θ < p∗i,θ < 1/2 which implies directly that ∂
∂τi,θ

E [πi,1] >
∂

∂τi,θ
E[πci,1].

Since the marginal benefit of an increase in precision on each stage of profits is lower

compared to when there is no informational middleman then firms will gather less information

about their private cost component. This may lead to worse outcomes for the firms.

For the common cost component, increased correlation of the signal reduces the value of

this signal in the first stage of competition. Moreover, the level of precision has no effect on

second stage profits, as the true value of ρ is learned by both firms. Without the informational

middleman the precision still affects the second stage due to its signal jamming effect. The

direction of this effect is less clear, as increase in the precision of this signal, means that the

signal will be closer to the true value and the other firm will become more informed about

the signal when they learn ρ. However, a completely uninformative signal does not signal

jam at all.
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5 Conclusion

We generalize a standard dynamic pricing competition model to allow for uncertainty in

common cost and private cost parameters. We characterize the unique symmetric linear

equilibrium of this model and use this to examine the incentives of firms to acquire and

subsequently share information in this setting. We show that the incentive of firms to

acquire additional information about private cost parameters is reduced when firms in the

industry pool resources to acquire information about common costs. On the other hand,

coordination of information acquisition on idiosyncratic cost terms can alleviate inefficiently

low information acquisition. Therefore, the welfare effects of coordination on information

between firms depends crucially on the type of information that is acquired.
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A Proofs

Proof of Lemma 2

From Lemma 1,

p?i,2 =
1

2b

(
a+ bci + eE

[
p?j,2
∣∣ ρ, pj,1, pi,1]) .

Therefore the expected price of firm j from the perspective of firm i given the public infor-

mation in the second period is

E[p?j,2|ρ, pi,1, pj,1] =
1

2b

(
a+ (E [cj| ρ, pj,1, pi,1]) b+ eE[p?i,2|ρ, p1]

)
=

1

2b
(a+ bE [cj| ρ, pj,1, pi,1]) +

e

4b2
(
a+ bE [ci| ρ, pj,1, pi,1] + eE[p?j,2|ρ, p1]

)
.

Note that firm j’s beliefs on firm i’s price can only be conditioned on public observables (ρ

and first-period prices p1) and firm i learns nothing [additional] by deviating in the first
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period, it must be that firm i’s expectation of firm j’s expectation of firm i’s price is equal

to the expectation of firms i’s price conditioning only on public observables and equilibrium

behavior. This leaves

E[p?j,2|ρ, pi,1, pj,1] =
2b

4b2 − e2
[
(a+ bE [cj| ρ, pj,1]) +

e

2b
(a+ bE [ci| ρ, pi,1])

]
.

Proof of Lemma 4

Define τ̄s,x =
1/σ2

s,x

1/σ2
x+1/σ2

s,x
and for x ∈ {θi, θj, ρ}. Then, in a linear (first stage) equilibrium,

 ci

ρ

pi,1

 =

 0 1 0 0

1 0 0 0

0 0 τ̄s,θpθ τ̄s,ρpρ




ρ

ci

si,θ

si,ρ

+

 0

0

p0 + (1− τ̄s,θ)µθpθ + (1− τ̄s,ρ)µρpρ



∼ N


 µρ + µθ

µρ

p0 + pθµθ + pρµρ

 ,


σ2c σ2ρ τ̄s,θσ

2
θpθ + τ̄s,ρσ

2
ρpρ

σ2ρ σ2ρ τ̄s,ρσ
2
ρpρ

τ̄s,θσ
2
θpθ + τ̄s,ρσ

2
ρpρ τ̄s,ρσ

2
ρpρ τ̄2s,θ

(
σ2s,θ + σ2θ

)
p2θ + τ̄2s,ρ

(
σ2s,ρ + σ2ρ

)
p2ρ


 .

It follows that the conditional expectation of cj given ρ and pj,1 is

E [ci| ρ, pi,1] = (µρ + µθ) + Σ12Σ
−1
22

((
ρ

pi,1

)
−

(
µρ

p0 + pθµθ + pρµρ

))
,

Σ12 =
(
σ2
ρ τ̄s,θσ

2
θpθ + τ̄s,ρσ

2
ρpρ

)
,

Σ22 =

(
σ2
ρ τ̄s,ρσ

2
ρpρ

τ̄s,ρσ
2
ρpρ τ̄ 2s,θ

(
σ2
s,θ + σ2

θ

)
p2θ + τ̄ 2s,ρ

(
σ2
s,ρ + σ2

ρ

)
p2ρ

)
.

Letting Σ12Σ
−1
22 = (m1 m2), it follows that κi ≡ ∂E[ci|ρ, pi,1]/∂pi,1 = m2; in particular, we

only need to care about the right-hand column of Σ−122 ,

Σ−122 =
1

|Σ22|

(
· −τ̄s,ρσ2

ρpρ

· σ2
ρ

)
.

It follows that

κi =
τ̄s,θσ

2
θσ

2
ρpθ

|Σ22|
=

τ̄s,θσ
2
θσ

2
ρpθ

τ̄ 2s,θσ
2
s,θσ

2
ρp

2
θ + τ̄ 2s,ρσ

2
ρ(σ

2
s,ρ + σ2

ρ)p
2
ρ − τ̄ 2s,ρσ4

ρp
2
ρ

=
σ2
θ τ̄s,θpθ

σ2
ε,ρτ̄

2
s,ρp

2
ρ +

(
σ2
θ + σ2

ε,θ

)
τ̄ 2s,θp

2
θ

.
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Then

∂

∂p
E[p?j,2|ρ, p1] =

be

4b2 − e2
κ =

be

4b2 − e2

(
σ2
θ τ̄s,θpθ

σ2
s,ρτ̄

2
s,ρp

2
ρ +

(
σ2
θ + σ2

s,θ

)
τ̄ 2s,θp

2
θ

)
.

Proof of Proposition 1

The first order condition is given by:

p?i,1 =
1

2b
E
[
bci + a+ ep̂j,1 +

e

2b

(
a− bci + eE

[
p?j,2
∣∣ ρ, p?i,1, p̂j,1]) ∂

∂pi,1
E
[
p?j,2
∣∣ ρ, p?i,1, p̂j,1]∣∣∣∣ si,ρ, si,θ] ,

where
∂

∂pi,1
E
[
p?j,2
∣∣ ρ, p?i,1, p̂j,1] =

be

4b2 − e2
κi

and

E
[
E
[
p?j,2
∣∣ ρ, p1]∣∣ si,ρ, si,θ] =

2b

4b2 − e2
[
(a+ bE [E [cj | ρ, pj,1]| si,ρ, si,θ]) +

e

2b
(a+ bE [E [ci| ρ, pi,1]| si,ρ, si,θ])

]
.

In a linear equilibrium, the random variables (ck, ρ, pk,1) are jointly normal and the condi-

tional expectation of cost in the second period is

E [ck| ρ, pk,1] = (µρ + µθ) + Σ12Σ
−1
22

((
ρ

pk,1

)
−

(
µρ

p0 + pθµθ + pρµρ

))
= (µρ + µθ) + (1− κkτ̄s,ρ,kpρ) (ρ− µρ) + (pk,1 − (p0 + pρµρ + pθµθ))κk.

Therefore the expectation of this conditional expectation given the signals available in the

first period are

E [E [cj| ρ, pj,1]| si,ρ, si,θ] = E [ρ| si,ρ] + µθ and

E [E [ci| ρ, pi,1]| si,ρ, si,θ] = E [ρ| si,ρ] + µθ + κipρ(1− τ̄s,ρ,i) (E [ρ| si,ρ]− µρ) + κipθ (E [θi| si,θ]− µθ) ,

and

E
[
E
[
p?j,2
∣∣ ρ, p1]∣∣ si,ρ, si,θ] =

2b

4b2 − e2
(a+ b (µθ + E [ρ| si,ρ]))

+
e

4b2 − e2
(a+ b (µθ + κipθ (E [θi| si,θ]− µθ) + E [ρ| si,ρ] + κipρ(1− τ̄s,ρ,i) (E [ρ| si,ρ]− µρ))) .
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The first order condition becomes

2bp?i,1 =E
[
bci + a+ epj,1 +

e

2b

(
a− bci + eE

[
p?j,2
∣∣ ρ, p?i,1, p̂j,1]) ∂

∂pi,1
E
[
p?j,2
∣∣ ρ, p?i,1, p̂j,1]∣∣∣∣ si,ρ, si,θ]

=a+ eE [pj,1| si,ρ] + bE [ci| si,ρ, si,θ] + bβκi

(
a

2b− e
+

(µθ + E [ρ| si,ρ]) be
4b2 − e2

−E [ci| si,ρ, si,θ]
2

+
β

2
(µθ + κipθ (E [θ| si,θ]− µθ) + E [ρ| si,ρ] + κipρ (1− τ̄s,ρ,i) (E [ρ| si,ρ]− µρ))

)
Lastly, note that

E [pj,1| si,ρ] = p0 + µθpθ + E [E [ρ| sj,ρ]| si,ρ] pρ,j
= p0 + µθpθ + E [ τ̄s,ρ,jsj,ρ + (1− τ̄s,ρ,j)µρ| si,ρ] pρ,j
= p0 + µθpθ + τ̄s,ρ,jE [ρ| si,ρ] pρ,j + (1− τ̄s,ρ,j)µρpρ,j.

Matching coefficients in the first order condition in Lemma 3, price coefficients satisfy

the following equalities in any linear equilibrium,

2bp0 = a+ (p0,j + µθpθ,j + (1− τ̄s,ρ,j)µρpρ,j) e+ κibβ

(
a

2b− e
+

µθbe

4b2 − e2

)
+
κibβ

2

2
((1− κipθ)µθ − (1− τ̄s,ρ,i)κiµρpρ) ,

2bpθ = b+ κbβ

(
−1

2
+

1

2
βκpθ

)
, (3)

2bpρ = eτ̄s,ρ,jpρ,j + b+ κbβ

(
be

4b2 − e2
− 1

2
+
β

2
(1 + (1− τ̄s,ρ,i)κpρ)

)
, (4)

κ =
σ2
θ τ̄s,θpθ

σ2
s,ρτ̄

2
s,ρp

2
ρ +

(
σ2
θ + σ2

s,θ

)
τ̄ 2s,θp

2
θ

. (5)

Equations (3) and (4) may be equivalently represented as quadratics in βκ, and solving

for equilibrium amounts to equating the roots of two quadratic equations. The equations

can be reduced to a system of two equations by explicitly solving the pθ equation.

2bpθ = b+
κbe2

4b2 − e2

(
−1

2
+

1

2

(
e2

4b2 − e2

)
κpθ

)
.

⇒0 = pθ(βκ)2 − βκ+ 2(1− 2pθ).

From equation (3),

βκ =
1

2pθ

(
1±

√
1− 8 (1− 2pθ) pθ

)
=

1

2pθ

(
1±

√
(1− 4pθ)

2

)
=

1± (1− 4pθ)

2pθ
.
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There are two solutions to this quadratic equation: βκ = 2 and βκ = (1 − 2pθ)/pθ. The

second order condition is given by

−2b+
be4

2(4b2 − e2)2
κ2 < 0

This simplifies to −2b+ b(βκ)2/2 < 0. When βκ = 2 then the left hand side equals zero, so

the second order condition is not satisfied. When βκ = (1 − 2pθ)/pθ, then pθ = 1
2+βκ

, and

the second order condition becomes pθ > 1/6 which is satisfied in equilibrium.

Solving Equation (4) for pρ in a symmetric equilibrium18 yeilds

pρ =
b− bβκ

(
b−e
2b+e

)
2b− eτ̄s,ρ − 1

2
bβ2κ2(1− τ̄s,ρ)

Now, focusing attention on κ, solving equations (3), (4), and (5), and therefore finding

an equilibrium reduces to solving the following single-variable equation,

(2 + βκ)2
(

1− βκ
(
b− e
2b− e

))2

σ2
s,ρτ̄

2
s,ρκ︸ ︷︷ ︸

LHS(κ)

=

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)2

(2− (1− β)κ)σ2
θ τ̄s,θ︸ ︷︷ ︸

RHS(κ)

.

(6)

To see that an equilibrium exists, let κ̄ = 2/(1− β) be the maximum feasible value of κ and

note that LHS(0) = 0 and RHS(0) > 0, and LHS(κ̄) > 0 and RHS(κ̄) = 0. Since both sides

of the equation are continuous in κ, there exists a κ that solves the equation, and this κ will

determine the linear pricing parameters p0, pθ, and pρ.

Showing uniqueness is more involved. We first show that RHS is decreasing. We then

show that either LHS is increasing, or it is increasing and then decreasing. Where LHS is

decreasing, it is concave and RHS is convex. Since LHS(κ̄) > RHS(κ̄) when τ̄s,ρ > 0, there

is a unique crossing point whenever τ̄s,ρ > 0. When τ̄s,ρ = 0, LHS is identically 0 for all κ,

so there is a unique crossing point at κ = κ̄. In either case, there is a unique feasible value

of κ that solves the equilibrium sufficient condition.

First, RHS is decreasing. This can be observed directly, and calculus is not necessary.

By inequalities (12) and (16), 1−β ∈ [0, 2/3] and κ ∈ [0, 3], so 2−(1−β)κ ≥ 0 is decreasing.

By inequality (18), βκ ∈ [0, 1], so (2b − τ̄s,ρe) − (1 − τ̄s,ρ)bβ2κ2/2 > 0 is decreasing. Then

RHS is the product of two decreasing and positive functions, and is itself decreasing.

18Here we impose both pρ,j = pρ and τ̄s,ρ,i = τ̄s,ρ,j .
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Second, LHS is either increasing, or is increasing and then decreasing. The first derivative

of LHS is

∂LHS

∂κ
= 2β (2 + βκ)

(
1− βκ

(
b− e
2b− e

))2

σ2
s,ρτ̄

2
s,ρκ

− 2β

(
b− e
2b− e

)
(2 + βκ)2

(
1− βκ

(
b− e
2b− e

))
σ2
s,ρτ̄

2
s,ρκ

+ (2 + βκ)2
(

1− βκ
(
b− e
2b− e

))2

σ2
s,ρτ̄

2
s,ρ.

Factoring out common positive terms gives

∂L̃HS

∂κ
= 2β

(
1− βκ

(
b− e
2b− e

))
κ− 2β

(
b− e
2b− e

)
(2 + βκ)κ+ (2 + βκ)

(
1− βκ

(
b− e
2b− e

))
= 2 +

(
2β − 4β

(
b− e
2b− e

)
+ β − 2β

(
b− e
2b− e

))
κ

+

(
−2β2

(
b− e
2b− e

)
− 2β2

(
b− e
2b− e

)
− β2

(
b− e
2b− e

))
κ2

= 2 +

(
3− 6

(
b− e
2b− e

))
βκ− 5

(
b− e
2b− e

)
β2κ2. (7)

Then the sign of ∂LHS/∂κ is determined by the sign of ∂L̃HS/∂κ, which is a negative

quadratic in κ. Since LHS(0) = 0 and LHS is positive, it follows that either LHS is increasing,

or it is increasing and then decreasing.

When LHS is increasing and then decreasing, its inflection point κ⊥ will be given by one

of the zeros of equation (7).19 The quadratic equation gives these zeros as

βκ⊥ =
2b− e

10 (b− e)

(3−
(
b− e
2b− e

))
±

√(
3− 6

(
b− e
2b− e

))2

+ 40

(
b− e
2b− e

)
=

1

10 (b− e)

(
(3 (2b− e)− 6 (b− e))±

√
(3 (2b− e)− 6 (b− e))2 + 40 (b− e) (2b− e)

)
=

1

10 (b− e)

(
3e±

√
(3e)2 + 40 (2b2 − 3be+ e2)

)
.

Since κ ≥ 0 and the radicand is weakly larger than (3e)2, only the “plus” solution to the

19We analyze equation (7) as a quadratic in βκ. Since we will show that βκ is decreasing in reb and β is
increasing in reb, it follows that κ is decreasing in reb.
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quadratic is valid. Letting reb = e/b and treating this as a quadratic in βκ, this is

βκ⊥ =
1

10− 10reb

(
3reb +

√
80− 120reb + 49r2eb

)
.

Taking the derivative of κ⊥ with respect to reb gives

∂βκ⊥

∂reb
=

(
1

10− 10reb

)2
((

3 +
49reb − 60√

80− 120reb + 49r2eb

)
(10− 10reb)

)

+10

(
3reb +

√
80− 120reb + 49r2eb

))
.

(8)

We want to show that κ⊥ is minimized when e = −b, so we check that ∂βκ⊥/∂reb > 0; it is

sufficient to check the numerator of equation (8).

0 ≷

(
3 +

49reb − 60√
80− 120reb + 49r2eb

)
(10− 10reb)

+ 10

(
3reb +

√
80− 120reb + 49r2eb

)
⇐⇒ 0 ≷

(
3
√

80− 120reb + 49r2eb + 49reb − 60

)
(1− reb)

+

(
3reb

√
80− 120reb + 49r2eb + 80− 120reb + 49r2eb

)
⇐⇒ − 3

√
80− 120reb + 49r2eb

≷ (49reb − 60) (1− reb) +
(
80− 120reb + 49r2eb

)
= 20− 11reb.

Since the left-hand side of the final inequality is always negative and the right-hand side is

always positive, it is the case that ∂βκ⊥/∂reb > 0. Then βκ⊥ is minimized at reb = −1, or

e = −b. This gives

βκ⊥ =
1

20

(
−3 +

√
80 + 120 + 49

)
=⇒ κ⊥ =

3

20

(
−3 +

√
249
)
≈ 1.917 ≥ 3

2
.

Then when LHS is decreasing, it is only decreasing for κ > 3/2.

We now show that where LHS is decreasing, it is concave. Placing the common positive

terms back into equation (7) gives

∂LHS

∂κ
∝
(

2 +

(
3− 6

(
b− e
2b− e

))
βκ− 5

(
b− e
2b− e

)
β2κ2

)
(2 + βκ)

(
1− βκ

(
b− e
2b− e

))
.

(9)
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Two points are of note: first, equation (7) implies [∂L̃HS/∂κ]|e=0 > 0, so if LHS is decreasing

our earlier result showing that κ⊥ is increasing in reb implies that e < 0. Second, the left

two terms in relationship 9 reduce to

(2 + βκ)

(
1− βκ

(
b− e
2b− e

))
= 2 +

(
e

2b− e

)
βκ−

(
b− e
2b− e

)
β2κ2.

This product is a negative quadratic that is maximized at κ = −e/(2β(2b − e)). If this

quantity is greater than 3, the above equation is positive and increasing for all relevant

κ. Since ∂L̃HS/∂κ is negative and decreasing (increasing in magnitude), this implies that

∂2LHS/∂κ < 0 and LHS is concave. For −e/(2β(2b− e)) ≥ 3 we require

− e

2β (2b− e)
≥ 3 ⇐⇒ −1

2

(
2b+ e

e

)
≥ 3 ⇐⇒ e ≤ −2

7
b ⇐⇒ reb ≤ −

2

7
.

By definition, there is a decreasing portion of LHS if and only if κ⊥ < 3. Then we need to

show that κ⊥ < 3 implies reb ≤ −2/7. Since we have shown that κ⊥ is increasing in reb, it is

sufficient to show that reb = −2/7 implies κ⊥ ≥ 3. To see this, substitute into equation (7)

with reb = −2/7,

∂L̃HS

∂κ

∣∣∣∣∣
reb=− 2

7

= 2 +

(
3− 6

( 9
7
16
7

))
βκ− 5

( 9
7
16
7

)
β2κ2 ∝ 32− 6βκ− 45β2κ2.

Solving this quadratic in βκ yields

βκ = − 1

90

(
6 +

√
36 + 4 (45) (32)

)
= − 1

15

(
1±
√

161
)
.

Since βκ ≥ 0, only the “minus” solution is negative. This yields

κ =
1

15

(√
161− 1

)( 1

β

)
=

1

15

(√
161− 1

)(4− r2eb
r2eb

)
=

1

15

(√
161− 1

)(4−
(
−2

7

)2(
−2

7

)2
)

=
16

5

(√
161− 1

)
≈ 37.403.

Then reb = −2/7 implies κ⊥ > 3, hence κ⊥ ≤ 3 implies reb < −2/7. Then LHS is concave

when it is decreasing.

We now show that RHS is convex for κ ∈ [3/2, 3], thus when LHS is possibly decreasing

RHS is convex. We show this directly by examining the second derivative and showing that
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it is positive.

∂RHS

∂κ
∝ −2 (1− τ̄s,ρ) bβ2κ

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)
(2− (1− β)κ)

− (1− β)

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)2

;

∂2RHS

∂κ2
∝ −2 (1− τ̄s,ρ) bβ2

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)
(2− (1− β)κ)

+ 2 (1− τ̄s,ρ)2 b2β4κ2 (2− (1− β)κ)

+ 2 (1− β) (1− τ̄s,ρ) bβ2κ

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)
+ 2 (1− β) (1− τ̄s,ρ) bβ2κ

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)
∝ −

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)
(2− (1− β)κ)

+ bβ2κ2 (2− (1− β)κ) + 2 (1− β)κ

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)
= (3 (1− β)κ− 2)

(
(2b− τ̄s,ρe)−

1

2
(1− τ̄s,ρ) bβ2κ2

)
+ bβ2κ2 (2− (1− β)κ) .

By definition 1− β ≥ 2/3, and by assumption κ > 3/2. Then 3(1− β)κ > 3. It follows that

∂2RHS

∂κ2
≥
((

(2b− τ̄s,ρe)−
1

2
(1− τ̄s,ρ) bβ2κ2

)
+ bβ2κ2 (2− (1− β)κ)

)
σ2
θ τ̄s,θ ≥ 0.

Moreover, this inequality is strict so long as σ2
θ τ̄s,θ > 0. Then RHS is convex for κ > 3/2.

Putting these arguments together gives the following. LHS and RHS intersect on the

interval κ ∈ [0, 3]. RHS is decreasing, and if LHS is increasing they have a unique intersection.

If LHS is not increasing, it is increasing for small values of κ and decreasing for large values

of κ, and where it is decreasing it is concave. For any possible values on which LHS is

decreasing, RHS is convex. Then there is at most one intersection on the region where LHS

is decreasing. If LHS is greater than RHS at the point at which it becomes decreasing, the

curves do not intersect at any point to the right because LHS(κ̄) > RHS(κ̄) = 0. Then the

curves intersect at a unique point, and equilibrium κ is unique. This directly implies that

equilibrium price strategies are unique.

Proof of Proposition 2
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Figure 1: A graphical depiction of the proof of equilibrium existence and uniqueness. The
existence of an equilibrium amounts to finding a κ such that LHS(κ) = RHS(κ). Since
LHS(0) < RHS(0) and LHS(κ̄) > RHS(κ̄) and both functions are continuous, such a κ is
guaranteed to exist. Additionally, RHS is decreasing. We show that either LHS is increasing
(left panel) or increasing and then decreasing (right panel). In the former case, it is clear
that there is a unique point of intersection and hence a unique equilibrium. In the latter
case, we show that LHS is concave where it is decreasing and RHS is convex anywhere LHS
is decreasing. Then LHS− RHS is concave, ensuring that equilibrium κ is unique.

From Proposition 1 we know that the values of pθ and pρ in equilibrium are

pρ =
1− βκ

(
b−e
2b−e

)
2− e

b
τ̄s,ρ − 1

2
β2κ2(1− τ̄s,ρ)

and pθ =
1

2 + βκ
.

If we multiply the top and bottom of the expression for pθ by 1 − βκ
(
b−e
2b−e

)
, then the

numerators are the same and we only need to compare the denominators of each expression.

The denominator of pθ becomes

(2 + βκ)

(
1− βκ

(
b− e
2b− e

))
= 2−

(
b− e
2b− e

)
β2κ2 − 2

(
b− e
2b− e

)
βκ+ βκ

When 0 < e ≤ b, then
(
b−e
2b−e

)
∈
[
0, 1

2

)
, and

2−
(
b− e
2b− e

)
β2κ2 − 2

(
b− e
2b− e

)
βκ+ βκ ≥ 2− 1

2
β2κ2(1− τ̄s,ρ)−

1

2
β2κ2τ̄s,ρ

> 2− e

b
τ̄s,ρ −

1

2
β2κ2(1− τ̄s,ρ).
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The last inequality follows from the fact that

1

2
β2κ2 ≤ 1

2
βκ =

e

b

be

2(4b2 − e2)
κ <

e

b
.

Since the denominator of pθ is at least as large as that of pρ, then pρ < pθ.

When −b ≤ e < 0, then
(
b−e
2b−e

)
∈
[
1
2
, 2
3

)
, and e

b
≤ 1

2
β2κ2. Therefore the above inequalities

flip and for these range of parameters, pρ ≤ pθ.

Proof of Proposition 3

Effect of τ̄s,θ

From Proposition 1 we know that there is a unique κ ∈
[
0, 2

1−β

]
such that the LHS and the

RHS of equation (6) are equal. Moreover, for κ = 0 the LHS is 0 and the right hand side is

positive, and for κ = 2
1−β the RHS is 0 and the LHS is positive. Therefore, for all κ larger

than the κ which satisfies the equation, the LHS is larger than the RHS.

As τ̄sθ increases, the LHS of the equation is constant while the RHS increases for all κ.

This shift up of the RHS will increase the κ which satisfies the equation. Because of the

inverse relationship between κ and pθ, pθ will decrease as as τ̄s,θ increases.

Effect of τ̄s,ρ

From our definition of τ̄s,x, we have

τ̄s,x =
σ2
x

σ2
x + σ2

s,x

=⇒ σ2
s,x =

(
1− τ̄s,x
τ̄s,x

)
σ2
x.

Then in the fixed point equation,

LHS (κ) = (2 + βκ)2
(

1− βκ
(
b− e
2b− e

))2

(1− τ̄s,ρ) τ̄s,ρσ2
ρκ, and

∂LHS

∂τ̄s,ρ
(κ) = (2 + βκ)2

(
1− βκ

(
b− e
2b− e

))2

(1− 2τ̄s,ρ)σ
2
ρκ.

The first equality follows directly from the definition of LHS and the above equation for

σ2
s,ρ. In particular, σ2

s,ρτ̄
2
s,ρ = (1− τ̄s,ρ) τ̄s,ρσ2

ρ. The second equality is then immediate. This

implies that ∂LHS/∂τ̄s,ρ is linear and decreasing in τ̄s,ρ, and is positive when τ̄s,ρ < 1/2 and

negative when τ̄s,ρ > 1/2.
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Figure 2: A graphical depiction of the response of κ to τ̄s,ρ. When τ̄s,ρ ≥ 1/2 and e < 0, an
increase in τ̄s,ρ increases RHS and decreases LHS, pushing κ rightward (left panel). When
τ̄s,ρ ≤ 1/2 and e > 0, an increase in τ̄s,ρ decreases RHS and increases LHS, pushing κ leftward
(right panel).

Additionally in the fixed point equation,

RHS (κ) =

(
2b− 1

2
bβ2κ2 +

(
1

2
bβ2κ2 − e

)
τ̄s,ρ

)2

(2− (1− β)κ)σ2
θ τ̄s,θ, and

∂RHS

∂τ̄s,ρ
(κ) = 2

(
1

2
bβ2κ2 − e

)(
2b− 1

2
bβ2κ2 +

(
1

2
bβ2κ2 − e

)
τ̄s,ρ

)
(2− (1− β)κ)σ2

θ τ̄s,θ.

Therefore ∂RHS/∂τ̄s,ρ is linear and increasing in τ̄s,ρ, and is positive when e < 0 and negative

when e > 0. This follows directly from rearrangement of the internal term,

1

2
bβ2κ2 − e =

(
1

2
(βκ)

(
be

4b2 − e2
κ

)
− 1

)
e.

If e < 0, be/(4b2 − e2) < 0; if e > 0, βκ < 1 and beκ/(4b2 − e2) < 1, so difference in

parentheses is negative. In either case, the term is signed as −e. Then when e < 0 this term

is positive and when e > 0 this term is negative. Lemma 11 follows directly from the above

observations.

Lemma 11. When τ̄s,ρ ≥ 1/2 and e < 0, κ is increasing and pθ is decreasing in τ̄s,ρ. When

τ̄s,ρ ≤ 1/2 and e > 0, κ is decreasing and pθ is increasing in τ̄s,ρ.

Lemma 12 (Limiting cases of common information). When τ̄s,ρ ∈ {0, 1},

κ =
1

pθ
=⇒ pθ =

1− β
2

.
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Proof. The second equality follows directly from the first. Recall that σ2
s,ρτ̄

2
s,ρ = (1− τ̄s,ρ) τ̄s,ρσ2

ρ.

Since all endogenous terms are bounded, when τ̄s,ρ ∈ {0, 1} we have

κ =
σ2
θ τ̄s,θpθ

σ2
s,ρτ̄

2
s,ρp

2
ρ +

(
σ2
θ + σ2

s,θ

)
τ̄ 2s,θp

2
θ

=
σ2
s,ρτ̄s,θpθ(

σ2
θ + σ2

s,θ

)
τ̄ 2s,θp

2
θ

=
1

pθ
.

Lemma 13 (Effect of τ̄s,ρ on pθ (first hard case)). When e > 0, there is a τ ? > 1/2 such

that whenever τ̄s,ρ > τ ?, κ is increasing and pθ is decreasing in τ̄s,ρ, and whenever τ̄s,ρ < τ ?,

κ is decreasing and pθ is increasing in τ̄s,ρ.

Proof. This is a loose proof.

We have already established that if such a τ ? exists, it is greater than 1/2. Since pθ =

(1−β)/2 when τ̄s,ρ ∈ {0, 1} and κ is continuous in the parameters of the problem, there is a

value τ̂ ? such that ∂LHS/∂τ̄s,ρ = ∂RHS/∂τ̄s,ρ at τ̂ ?. Because both of these partial derivatives

are linear, a non-marginal increase in τ̄s,ρ leads to a point where ∂RHS/∂τ̄s,ρ > ∂LHS/∂τ̄s,ρ;

as discussed earlier, a non-marginal increase in τ̄s,ρ from this point leads (näıvely) to an

increase in κ.

We can additionally show that when e > 0 and τ̄s,ρ > 1/2, ∂RHS/∂τ̄s,ρ is increasing and

∂LHS/∂τ̄s,ρ is decreasing in κ. This add-on effect implies that ∂RHS/∂τ̄s,ρ is even larger and

∂LHS/∂τ̄s,ρ is even smaller than we would näıvely expect, pushing κ even higher. Then all

effects point in the same direction. Letting τ ? = τ̂ ? completes the proof.

Lemma 14 (Effect of τ̄s,ρ on pθ (first hard case)). When e < 0, there is a τ ? ≤ 1/2 such

that whenever τ̄s,ρ < τ ?, κ is deceasing and pθ is increasing in τ̄s,ρ, and whenever τ̄s,ρ > τ ?,

κ is increasing and pθ is decreasing in τ̄s,ρ.

Proof. This is a loose proof.

We have already established that if such a τ ? exists, it is less than 1/2. As noted earlier,

∂LHS/∂τ̄s,ρ is positive and decreasing in τ̄s,ρ and ∂RHS/∂τ̄s,ρ is positive and increasing in

τ̄s,ρ. If ∂LHS/∂τ̄s,ρ > ∂RHS/∂τ̄s,ρ, then κ is locally decreasing in τ̄s,ρ.

From earlier results, we have

∂LHS

∂τ̄s,ρ
(κ) =

(
1− 2τ̄s,ρ

(1− τ̄s,ρ) τ̄s,ρ

)
LHS (κ) , and

∂RHS

∂τ̄s,ρ
(κ) =

(
bβ2κ2 − 2e

2b− 1
2
bβ2κ2 +

(
1
2
bβ2κ2 − e

)
τ̄s,ρ

)
RHS (κ) .
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Figure 3: A graphical depiction of the comparative statics of κ with respect to τ̄s,ρ when e > 0
and τ̄s,ρ > 1/2. In this case, both LHS and RHS decrease. We show that for sufficiently
high τ̄s,ρ, LHS decreases at a faster rate than RHS. The existence of a unique threshold
determining which term decreases faster follows from the observation that from the point at
which they decrease equally (the τ̄s,ρ at which ∂κ/∂τ̄s,ρ = 0), a slight increase in τ̄s,ρ moves
into a region where LHS is decreasing faster than RHS. While the first-order effect is zero,
the second-order effect implies that κ is increasing. We show that in this case, ∂LHS/∂τ̄s,ρ
is decreasing in κ while ∂RHS/∂τ̄s,ρ is increasing in κ, so the additional second-order effect
(due to the derivatives shifting) points in the same direction.

In any equilibrium, LHS(κ) = RHS(κ), so checking ∂LHS/∂τ̄s,ρ > ∂RHS/∂τ̄s,ρ is equivalent

to checking

1− 2τ̄s,ρ
(1− τ̄s,ρ) τ̄s,ρ

>
β2κ2 − 2reb

2− 1
2
β2κ2 +

(
1
2
β2κ2 − reb

)
τ̄s,ρ

⇐⇒
(

2− rebτ̄s,ρ
1− τ̄s,ρ

− 1

2
β2κ2

)
(1− 2τ̄s,ρ) >

(
β2κ2 − 2reb

)
τ̄s,ρ

⇐⇒ (2− rebτ̄s,ρ) (1− 2τ̄s,ρ) >

(
1

2
β2κ2 − 2rebτ̄s,ρ

)
(1− τ̄s,ρ)

⇐⇒ 2 (1− 2τ̄s,ρ) >
1

2
(1− τ̄s,ρ) β2κ2 − τ̄s,ρreb

⇐⇒ 2− 1

2
β2κ2 >

(
4− reb −

1

2
β2κ2

)
τ̄s,ρ. (10)

Applying bounds to inequality (10) gives that ∂LHS/∂τ̄s,ρ > ∂RHS/∂τ̄s,ρ when τ̄s,ρ < 3/10,

regardless of the other parameters in the model. Then when e < 0, κ is decreasing in τ̄s,ρ

when τ̄s,ρ < 3/10 and increasing when τ̄s,ρ > 1/2. We now address the remaining gap,

τ̄s,ρ ∈ [3/10, 1/2].

Note that inequality (10) becomes more difficult to satisfy as κ increases. In particular,

the derivative of the left-hand side is −β2κ while the derivative of the right-hand side is
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Figure 4: A graphical depiction of the comparative statics of κ with respect to τ̄s,ρ when
e < 0 and τ̄s,ρ < 1/2. This is just a doodle for intuition.

−β2κτ̄s,ρ; since τ̄s,ρ < 1/2, the derivative of the right-hand side is less negative (hence larger)

than the derivative of the left-hand side. By earlier arguments, we know that there is a τ̂ ?

such that ∂LHS/∂τ̄s,ρ = ∂RHS/∂τ̄s,ρ. Consider the effect on κ of a small decrease in τ̄s,ρ from

this point. Since τ̄s,ρ is moving into the range on which ∂LHS/∂τ̄s,ρ > ∂RHS/∂τ̄s,ρ, κ should

intuitively increase (this direction is “backwards”, since we are looking at a decrease in τ̄s,ρ,

and thus a negative derivative), ignoring fixed point effects. However, since ∂LHS/∂τ̄s,ρ =

∂RHS/∂τ̄s,ρ at τ̂ ?, fixed point effects are relevant. If κ were to decrease following this small

decrease in τ̄s,ρ, inequality (10) becomes easier to satisfy. Then ∂LHS/∂τ̄s,ρ > ∂RHS/∂τ̄s,ρ

in both first- and second-order effects, implying that κ increases. This contradicts the

assumption that κ decreases. Then a small decrease in τ̄s,ρ results in an increase in κ.

It then follows that from any τ̄s,ρ such that ∂LHS/∂τ̄s,ρ = ∂RHS/∂τ̄s,ρ, κ is increasing to

the left of this intersection (we showed κ was decreasing with a decrease in τ̄s,ρ, therefore κ

is increasing in τ̄s,ρ). Letting τ ? be the maximum such τ̂ ? completes the proof.

Proof of Proposition 4

From Lemma 5, equilibrium first period prices must satisfy

pci,1 =
1

2b
E
[
bci + a+ epcj,1 +

1

2b

(
a− bci + eE

[
pcj,2
∣∣ ρ, sρ, p1]) ∂

∂pi,1
E
[
p?j,2
∣∣ ρ, sρ, p1]∣∣∣∣ sρ, si,θ] .

The expectation of second period price is

E
[
E
[
pcj,2
∣∣ ρ, sρ, p1]∣∣ si,θ, sρ] =

a

2b− e
+
β − 1

2
E [E[ci|ρ, sρ, pi,1]| si,θ, sρ]+

be

4b2 − e2
E [E[cj|ρ, sρ, pi,1]| si,θ, sρ] .
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The conditional expectation of each firm’s cost in the second period is

E[ck|ρ, sρ, pk,1] = ρ+ E[θk|sk,θ].

The expectation of this conditional expectation in the first period are

E [E[ci|ρ, sρ, pi,1]| si,θ, sρ] = E[ρ|sρ] + E[θi|si,θ]

E [E[cj|ρ, sρ, pi,1]| si,θ, sρ] = E[ρ|sρ] + µθ

Additionally, an increase in first period price effects the public expectation of cost in the

second period directly by the coefficient on the signal.

∂E[ci|ρ, sρ, pi,1]
∂pi,1

=
∂E[ci|si,θ]
∂si,θ

∂si,θ
∂pi,1

=
τ̄i,θ
p̃θ

=
1

pθ

Given the simplified information structure, the first order condition in becomes

2bpci,1 = b(E[θi|si,θ] + E[ρ|sρ]) + a+ eE[pcj,1|sρ]

+ bβ
1

pθ,c

[
a

2b− e
+
β − 1

2
(E[θi|si,θ] + E[ρ|sρ]) +

be

4b2 − e2
(E[ρ|sρ] + µθ)

]
Rearranging and matching coefficients, we have that any linear equilibrium satisfies the

following system of equations.

pθ,c(1− 2pθ,c) =
β(1− β)

2

pθ,c

(
1 +

e

b
pρ,c − 2pρ,c

)
=

(
1− β

2
− be

4b2 − e2

)
β

pθ,c

(a
b

+
e

b
(p0,c + pθ,cµθ)− 2p0,c

)
= −β

(
a

2b− e
+

beµθ
4b2 − e2

)
where pci,1 = p0,c+pρ,cE[ρ|sρ]+pθ,cE[θi|si,θ]. The first equation has two solutions for pθ,c, but

the second order condition only holds for pθ,c = (1− β)/2. Solving the remaining equations
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given this value for pθ we get

pρ,c(2b− e) = b+
2βb

1− β

(
β − 1

2
+

be

4b2 − e2

)
⇒ pρ,c =

b

2b− e
+

be

4b2 − e2
β

p0,c(2b− e) = a+
(1− β)eµθ

2
+

2bβ

1− β

(
a

2b− e
+

be

4b2 − e2
µθ

)
⇒ p0,c =

2a+ (1− β)eµθ
2(2b− e)

+
2bβ

1− β

(
a

2b− e
+

be

4b2 − e2
µθ

)
Because κ ≤ 2/(1− β) with the inequality strict for e 6= 0, then

pθ =
1

2 + βκ
≥ 1

2 + 2β
1−β

=
1− β

2
= pθ,c

with the inequality strict when e 6= 0.

Defining r = e
b

we know that r ∈ [−1, 1] and the sign of r is the same as the sign of e.

Then we can write both pρ,c and pρ in terms of r,

pρ,c =
1

2− r
+

r

4− r2
β and pρ =

(2−r)−(1−r)βκ
2−r

2− rτ̄s,ρ − 1
2
β2κ2(1− τ̄s,ρ)

.

Becuase βκ ≤ e
b
≤ 1 then pρ can be bounded as follows when r ≥ 0

pρ ≤
(2− r)− (1− r)βκ

(2− r)2
≤ 1

2− r
≤ pρ,c.

Proof of Proposition 5

Comparing the first order conditions in Lemma 3 and Lemma 5, all terms are the same

except E[ ∂
∂pi,1

E [pj,2| ρ, pi,1, s] |s] and E[E [pj,2| ρ, pi,1, s] |s]. From Proposition 4 we know that

the first term is constant for all signals, and is larger when firms share common cost infor-

mation than when they do not. Taking the expectation of the second term it is the same in

either case.

E[E[E [pj,2| ρ, pi,1, s] |s]]

=
1

4b2 − e2
(
E[(2b+ e)a+ 2b2(µθ + E[ρ|si,ρ])] + beE[κ(E[pi,1|s]− p0 + pθµθ + pρE[ρ|s])]

)
The later term equals zero in both the sharing and non-sharing settings as E[E[pi,1|s]−
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p0+pθµθ+pρE[ρ|s])] = 0. Moreover, the former term only consists of constants and expected

costs which are the same in each case. Therefore

E[pi,2] = E[pci,2] =
1

4b2 − e2
(
(2b+ e) + 2b2(µθ + µρ)

)
Imposing symmetry and taking the expectation of optimal pricing equation we have,

E[2bpi,1] = E
[
E
[
bci + a+ epi,1 +

1

2b

(
a− bci + eE

[
pcj,2
∣∣ ρ, sρ, p1]) be

4b2 − e2
κ

∣∣∣∣ sρ, si,θ]] .
where all terms are the same except κ, which is larger and denoted by κc in the case

where firms share common cost information. Then

E[pi,1] =
1

2b− e

(
a+ b(µρ + µθ) +

eκ

2(4b2 − e2)
E [E [ (a− bci + eE [pj,2| ρ, sρ, p1])| sρ, si,θ]]

)
≤ 1

2b− e

(
a+ b(µρ + µθ) +

eκc

2(4b2 − e2)
E
[
E
[(
a− bci + eE

[
pcj,2
∣∣ ρ, sρ, p1])∣∣ sρ, si,θ]])

= E[pci,1]

Proof of Lemma 6

Ex ante expected profits in the first period are given by

E [E [πi,1| si]] = E [E [ (a− bpi + epj) (pi − ci)| si]]

= E
[
E
[
api − aci − bp2i + bcipi + epipj − ecipj

∣∣ si]] .
Any terms which contain only first powers of uncorrelated variables are invariant to the

investment in precision, and can be subsumed into an additional parameter. For example,

E [E [api| si]] = E [E [api0 + apiθE [θi| si,θ] + apiρE [ρ| si,ρ]| si]]

= api0 + apiθE [E [θi| si]] + apiρE [E [ρ| si]]

= api0 + apiθE [θi] + apiρE [ρ] = api0 + apiθµθ + apiρµρ;

E [E [aci| si]] = E [E [ (θi + ρ) a| si]]

= aE [E [θi + ρ| si]] = aθi + aρ.

Lemma 15. The interrelations of the conditional expected values of cost components are as
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follows:

E
[
E [θi| si]2

]
=

τi,θ
(τi,θ + τθ) τθ

+ µ2
θ,

E
[
E [ρ| si]2

]
=

τi,ρ
(τi,ρ + τρ) τρ

+ µ2
ρ,

E [E [ρ| si]E [ρ| sj]] =
τi,ρτj,ρ

(τi,ρ + τρ) (τj,ρ + τρ) τρ
+ µ2

ρ.

Then first-period profits rely on the investment in precision only through the last four

parameters.

E
[
E
[
p2i
∣∣ si]] = E

[
E
[
(pi0 + piθE [θi| si] + piρE [ρ| si])2

∣∣ si]]
= E

[
E
[
p2i0 + 2pi0piθE [θi| si] + 2pi0piρE [ρ| si]

∣∣ si]]
+ E

[
E
[
p2iθE [θi| si]2 + 2piθpiρE [θi| si]E [ρ| si] + p2iρE [ρ| si]2

∣∣ si]]
=

τi,θp
2
iθ

(τi,θ + τθ) τθ
+

τi,ρp
2
iρ

(τi,ρ + τρ) τρ
+ Ci1.

E [E [cipi| si]] = E [E [ (θi + ρ) (pi0 + piθE [θi| si] + piρE [ρ| si])| si]]

= E [E [piθθiE [θi| si] + piρρE [ρ| si]| si]] + Ci21

= E
[
piθE [θi| si]2 + piρE [ρ| si]2

]
+ Ci21

=
τi,θpiθ

(τi,θ + τθ) τθ
+

τi,ρpiρ
(τi,ρ + τρ) τρ

+ Ci2.

E [E [pipj| si]] = E [E [pipj| si, sj]]

= E [E [ (pi0 + piθE [θi| si] + piρE [ρ| si]) (pj0 + pjθE [θj| sj] + pjρE [ρ| sj])| si, sj]]

= E [piρpjρE [ρ| si]E [ρ| sj]] + Ci31

=
τi,ρτj,ρpiρpjρ

(τi,ρ + τρ) (τj,ρ + τρ) τρ
+ Ci3.

E [E [cipj| si]] = E [E [cipj| si, sj]]

= E [E [ (θi + ρ) (pj0 + pjθE [θj| sj] + pjρE [ρ| sj])| si, sj]]

= E [pjρE [ρ| si]E [ρ| sj]] + Ci41

=
τi,ρτj,ρpjρ

(τi,ρ + τρ) (τj,ρ + τρ) τρ
+ Ci4.
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Putting everything together, we are left with

E [πi,1] = −
(

τi,θp
2
iθ

(τi,θ + τθ) τθ
+

τi,ρp
2
iρ

(τi,ρ + τρ) τρ

)
b+

(
τi,θpiθ

(τi,θ + τθ) τθ
+

τi,ρpiρ
(τi,ρ + τρ) τρ

)
b

+

(
τi,ρτj,ρpiρpjρ

(τi,ρ + τρ) (τj,ρ + τρ) τρ

)
e−

(
τi,ρτj,ρpjρ

(τi,ρ + τρ) (τj,ρ + τρ) τρ

)
e+ Ci

=

(
(1− piθ) piθτi,θ

(τi,θ + τθ) τθ

)
b+

(
(1− piρ) piρτi,ρ

(τi,ρ + τρ) τρ

)
b−

(
(1− piρ) pjρτi,ρτj,ρ

(τi,ρ + τρ) (τj,ρ + τρ) τρ

)
e+ Ci.

Proof of Lemma 8 First period profits for given realization of signals (sρ, si,θ) are

πi,1(sρ, si,θ) = (a+ eE[pj,1(sρ, sj,θ)|sρ])(pci,1(sρ, si,θ)− E[ci|sρ, si,θ])

− b(pci,1(sρ, si,θ))2 + bpci,1(sρ, si,θ)E[ci|sρ, si,θ]

Expected first period payoffs for given information precision levels20 are

E[πi,1(sp, si,θ)|τε,ρ, τ iε,θ] = aE[pci,1(sρ, si,θ)− E[ci|sρ, si,θ]|τε,ρ, τ iε,θ]

+ eE[E[pj,1(sρ, sj,θ)|sρ](pci,1(sρ, si,θ)− E[ci|sρ, si,θ])|τε,ρ, τ iε,θ]

− bE[(pci,1(sρ, si,θ))
2|τε,ρ, τ iε,θ] + bE[pci,1(sρ, si,θ)E[ci|sρ, si,θ]|τε,ρ, τ iε,θ]

Grouping together the terms that do not depend on precision into C this ex-ante first

period payoff becomes

E[πi,1(sp, si,θ)|τε,ρ, τ iε,θ] = e(p2ρ − pρ)E[E[ρ|sρ]|τε,ρ] + b(pρ − p2ρ)E[(E[ρ|sρ])2|τε,ρ]

+ b(p2θ − pθ)E[(E[θi|si,θ])2|τ iε,θ] + C

= b(pθ − p2θ)Var(E[θi|si,θ]) + (b− e)(pρ − p2ρ)Var(E[ρ|sρ]) + C

= b(pθ − p2θ)
τ iε,θ

(τθ + τ iε,θ)τθ
+ (b− e)(pρ − p2ρ)

τε,ρ
(τρ + τε,ρ)τρ

+ C

B Conditional expectations

The following expectations are used throughout the paper.

20Firm i’s payoffs are not affected by the precision of information firm j has about its private cost com-
ponent
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E [pj,1| si,ρ] = p0,j + µθpθ,j + τ̄s,ρ,jE [ρ| si,ρ] pρ,j + (1− τ̄s,ρ,j)µρpρ,j (11)

B.1 Proofs of expectations

Proof of expectation (11).

E [pj,1| si,ρ] = E [p0,j + E [θj| sj,θ] pθ,j + E [ρ| sj,ρ] pρ,j| si,ρ]

= p0,j + E [ τ̄s,θ,jsj,θ + (1− τ̄s,θ,j)µθ| si,ρ] pθ,j + E [ τ̄s,ρ,jsj,ρ + (1− τ̄s,ρ,j)µρ| si,ρ]

= p0,j + µθpθ,j + τ̄s,ρ,jE [ρ| si,ρ] pρ,j + (1− τ̄s,ρ,j)µρpρ,j

C Bounds on values

The following inequalities are used throughout the paper.

β ∈
[
0,

1

3

]
(12)

b− e
2b− e

∈
[
0,

2

3

]
(13)(

b− e
2b− e

)
β ∈

[
0,

2

9

]
(14)

pθ ∈
[

1

3
,
1

2

]
(15)

κ ∈ [0, 3] (16)∣∣∣∣ be

4b2 − e2

∣∣∣∣κ ∈ [0, 1] (17)

βκ ∈
[
0,
∣∣∣e
b

∣∣∣] ⊆ [0, 1] (18)

C.1 Proofs of bounds

Proof of inequality (12). Since |e| ≤ b, β = e2/(4b2−e2) ≥ 0. To establish the upper bound,

note that the numerator is increasing in e2 and the denominator is decreasing in e2, so the

maximum value of β will be attained when e2 is at its maximum. Since e2 ≤ b2, it follows

that β ≤ 3.
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Proof of inequality (13). Since |e| ≤ b, it is immediate that (b−e)/(2b−e) ≥ 0. To establish

the upper bound we examine the first derivative of the expression,21

− (2b− e) + (b− e)
(2b− e)2

= − b

(2b− e)2
< 0.

Then the derivative is negative everywhere, and the expression is maximized when e is at its

minimum, e = −b. This gives
b− (−b)
2b− (−b)

=
2

3
.

Proof of inequality (14). This follows directly from inequalities (12) and (13).

Proof of inequalities (15) and (16). Since βκ ≥ 0 and pθ = 1/(2 + βκ), it must be that

pθ ≤ 1/2. Further, pθ will be minimized when βκ is maximized. Looking at κ in isolation,

κ =
σ2
θ τ̄s,θpθ

σ2
s,ρτ̄

2
s,ρp

2
ρ +

(
σ2
θ + σ2

s,θ

)
τ̄ 2s,θp

2
θ

.

All involved terms are positive, so κ can be bounded above by assuming that τ̄s,ρ = 0. This

gives

κ ≤ σ2
θ τ̄s,θpθ(

σ2
θ + σ2

s,θ

)
τ̄ 2s,θp

2
θ

=
σ2
θ τ̄s,θpθ
σ2
θ τ̄s,θp

2
θ

=
1

pθ
.

Let p
θ

be the minimum feasible value of pθ and β = 1/3 be the maximum feasible value of

β; then κ ≤ 1/p
θ
. It follows that

pθ ≥
1

2 + β
p
θ

=⇒ p
θ
≥ 1

2 + β
p
θ

.

This gives

2p
θ

+ β ≥ 1 =⇒ p
θ
≥ 1

3
.

Then pθ ≥ 1/3. It follows that κ ≤ 3. Since |e| ≤ b, be/(4b2 − e2) ≤ 1/3, hence(
be

4b2 − e2

)
κ ≤

(
1

3

)
3 = 1.

21Basic intuition about fractions is sufficient for this maximization. We find that straightforward calculus
is simpler to analyze.
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Proof of inequality (17).

Proof of inequality (18). Note that

β =
e

b

(
be

4b2 − e2

)
.

Then inequality (18) follows immediately from inequality (17).
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