
Top Trading Cycles, Consistency, and Acyclic Priorities
for House Allocation with Existing Tenants∗

Mehmet Karakaya† Bettina Klaus‡ Jan Christoph Schlegel §

September 19, 2017

Abstract

We study the house allocation with existing tenants model (introduced by Abdulka-
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with existing tenants a top trading cycles rules is consistent if and only if its under-
lying priority structure satisfies our acyclicity condition. Moreover, even if no priority
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1 Introduction

Motivated by real life on-campus housing practices, Abdulkadiroğlu and Sönmez (1999)
introduced house allocation problems with existing tenants : A finite set of houses has to be
allocated to a finite set of agents without using monetary transfers. Each agent is either an
existing tenant who occupies a house or a new applicant, and each house is either occupied
or vacant. Furthermore, each agent has strict preferences over all houses and the so-called
null house (or outside option). An outcome for a house allocation problem with existing
tenants is a matching that assigns to each agent either a real house or the null house, such
that no real house is assigned to more than one agent. A rule selects a matching for each
house allocation problem with existing tenants.

A house allocation problem with existing tenants reduces to a housing market (Shapley
and Scarf, 1974) if there are no new applicants and no vacant houses, i.e., all agents are
existing tenants and all houses are occupied (we discuss some related literature on housing
markets in Appendix C.1). A house allocation problem with existing tenants reduces to a
house allocation problem (Hylland and Zeckhauser, 1979) if there are no existing tenants and
no occupied houses, i.e., all agents are new applicants and all houses are vacant (we discuss
some related literature on house allocation problems in Appendix C.2).

An important question that emerged in both the literature on housing markets as well
as the house allocation problem is the characterization of rules that allocate houses in a
Pareto-optimal1 and strategy-proof 2 way. For housing markets, Roth and Postlewaite (1977,
Theorem 2’) showed that the core of a housing market3 is unique and it is the outcome of
the top trading cycles (TTC) algorithm. Roth (1982) showed that the core / TTC rule
is strategy-proof, and Bird (1984) showed that it is also group strategy-proof.4 Ma (1994,
Theorem 1) characterized the core / TTC rule of a housing market by Pareto-optimality,
individual-rationality (for tenants),5 and strategy-proofness; see also Sönmez (1999, Corol-
lary 3) and Svensson (1999, Theorem 2).

For house allocation problems, Pápai (2000) introduced hierarchical exchange rules : Hi-
erarchical exchange rules extend the way TTC rules work by specifying ownership rights for
the houses in an iterative hierarchial manner and by allowing for associated iterative trades.
Pápai (2000) showed that a rule for house allocation problems satisfies Pareto-optimality,
group strategy-proofness, and reallocation-proofness6 if and only if it is a hierarchical ex-

1A rule is Pareto-optimal if the matching chosen by the rule is such that there is no other matching that
makes some agents better off without hurting the others.

2A rule is strategy-proof if no agent can ever benefit by misrepresenting his preferences unilaterally.
3A matching for a housing market is in the core (or core stable) if no subset of agents exists such that

some of them strictly benefit by reallocating their occupied houses among themselves, without hurting other
agents in the group.

4A rule is group strategy-proof if no group of agents can ever benefit by misrepresenting their preferences.
5A rule for housing markets satisfies individual-rationality (for tenants) if no agent is assigned a house

that is worse for him than his occupied house.
6A rule for house allocation problems is reallocation-proof if there do not exist two agents who gain by

first misreporting their preferences and then swapping their assigned houses, such that neither of the two
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change rule. The analysis of Pápai (2000) was extended by Pycia and Ünver (2017), who
provided a full characterization of the class of Pareto-optimal and group strategy-proof rules
without relying on reallocation-proofness.

For house allocation problems, if consistency7 is considered in addition to Pareto-
optimality and (group) strategy-proofness, then rules based on acyclic priorities become
focal: For house allocation with quotas problems, which reduce to house allocation prob-
lems when the quota of each house is one, Ergin (2002) and Kesten (2006) studied rules
that allocate houses based on acyclic priorities.8 Ergin (2002, Theorem 1) showed that for
the agents-proposing deferred acceptance rule (Gale and Shapley, 1962) based on a priority
structure π, denoted by DAπ, the following are equivalent: DAπ is Pareto-optimal, DAπ is
group strategy-proof, DAπ is consistent, and π is (Ergin) acyclic. Kesten (2006, Theorems 1
and 2) showed that the TTC rule based on the priority structure is the agents-proposing
deferred acceptance rule based on the priority structure if and only if the priority structure
is (Kesten) acyclic, and the TTC rule based on the priority structure is consistent if and
only if the priority structure is (Kesten) acyclic.

In the work of Ergin (2002) and Kesten (2006), the priority structure is exogenously given.
The class of TTC rules based on priority structures is a subclass of the hierarchical exchange
rules studied by Pápai (2000). Hence, under group strategy-proofness and reallocation-
proofness, priorities can endogenously arise. This is also the case under consistency (Ehlers
and Klaus, 2006): a rule is an efficient priority rule if it adapts to an Ergin acyclic priority
structure9 and the assignment of houses to agents are determined by the agents-proposing
deferred acceptance rule. Ehlers and Klaus (2006, Proposition 2 and Theorem 1) char-
acterized efficient priority rules for house allocation problems by Pareto-optimality, group
strategy-proofness, and reallocation-consistency.10

Motivated by these previous works, we extend the analysis of Pareto-optimal, (group)
strategy-proof, and consistent rules to the more general model of house allocation with exist-
ing tenants. We extend the notion of (Ergin / Kesten) acyclicity to this model and show that
a TTC rule based on ownership-adapted priorities11 is consistent12 if and only if the priority

agents can change his assignment by misreporting alone.
7A rule for house allocation problems is consistent if the following holds: suppose that after houses are

allocated according to the rule, some agents leave the house allocation problem with their assigned houses.
Then, if the remaining agents were to allocate the remaining houses according to the rule, each of them
would receive the same house.

8Ergin (2002) and Kesten (2006) use different notions of acyclicity that, however, coincide for house
allocation problems. We discuss house allocation with quotas problems and Ergin and Kesten acyclicity in
detail in Appendix C.3).

9For house allocation problems, a rule adapts to a priority structure if no agent has a higher priority for
the house assigned to another agent that he would prefer to his assigned house.

10A rule for house allocation problems is reallocation-consistent if the following holds: suppose that after
houses are allocated according to the rule some agents are removed from the problem with their assigned
houses, then, if these removed agents were to allocate their assigned houses (the removed houses) among
themselves according to the rule, each of them would receive the same house.

11Priorities are ownership-adapted if each tenant has top priority at his occupied house.
12A rule for house allocation problems with existing tenants is consistent if the following holds: suppose
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structure is acyclic (Theorem 1). As the second main result (Theorem 2), we characterize
TTC rules based on ownership-adapted acyclic priorities by Pareto-optimality, individual-
rationality, strategy-proofness, reallocation-proofness, and consistency. This result gener-
alizes the characterizations of the core / TTC rule for housing markets by Ma (1994) (see
Corollary 1) and of efficient priority rules for house allocation problems by Ehlers and Klaus
(2006) (see Corollary 3).

One important precursor of our study is the work of Sönmez and Ünver (2010) on the
so called YRMH-IGYT (you request my house - I get your turn) rules introduced by Ab-
dulkadiroğlu and Sönmez (1999) for house allocation with existing tenants. Sönmez and
Ünver (2010, Theorem 1) showed that a rule for house allocation problems with existing
tenants satisfies Pareto-optimality, individual-rationality, strategy-proofness, weak neutral-
ity,13 and consistency if and only if it is a YRMH-IGYT rule. Their work relates to ours
as follows. The class of TTC rules based on ownership-adapted acyclic priorities that we
study is a superset of the class of YRMH-IGYT rules. Moreover, a TTC rule based on
ownership-adapted acyclic priorities can be interpreted as a two-step rule where the first
rule is an almost YRMH-IGYT rule and the second rule is an efficient priority rule of Ehlers
and Klaus (2006) (see Proposition 3).

The paper is organized as follows. In Section 2 we introduce the house allocation with
existing tenants model and basic properties of rules. In Section 3 we introduce priority
structures and TTC rules. Furthermore, we show that a TTC rule based on ownership-
adapted priorities satisfies Pareto-optimality, individual-rationality, strategy-proofness, and
reallocation-proofness (Proposition 1) and that a TTC rule based on ownership-adapted
priorities is consistent if and only if the priority structure is acyclic (Theorem 1). In Sec-
tion 4 we state and prove our characterization of TTC rules that are based on ownership-
adapted acyclic priorities by Pareto-optimality, individual-rationality, strategy-proofness,
reallocation-proofness, and consistency (Theorem 2). Section 5 concludes by showing how
our results imply previous results by Ma (1994) (Corollary 1), Kesten (2006) (Corollary 2),
and Ehlers and Klaus (2006) (Corollary 3) and by interpreting a TTC rule based on
ownership-adapted acyclic priorities as a two-step rule where the first rule is an almost
YRMH-IGYT rule and the second rule is an efficient priority rule (Proposition 3).

that after houses are allocated according to the rule we remove some agents with their assignments and some
unassigned houses from the problem in a way that the reduced problem contains the occupied houses of all
remaining existing tenants, i.e., we never remove an occupied house without its existing tenant. Then, if the
remaining agents were to allocate the remaining houses according to the rule, each of them would receive
the same house.

13A rule for house allocation problems with existing tenants is weakly neutral if it is independent of the
names of the vacant houses.
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2 House Allocation with Existing Tenants and Basic

Properties

We mostly follow Sönmez and Ünver (2010) in this section.

Let I be a finite set of potential agents and H be a finite set of potential houses.
Without loss of generality we assume that |I| ≥ 3 and |H| ≥ 2 . Let h0 denote the null
house. We interpret the null house as the outside option of an agent if he does not receive
any house. We fix a global ownership structure h : I → H ∪ {h0}. An agent i ∈ I is
either an existing tenant, i.e., he already occupies a house h(i) ∈ H, or a new applicant,
i.e., h(i) = h0. No two agents can occupy the same house in H, i.e., for each i, j ∈ I with
h(i) = h(j) 6= h0 we have i = j. Let IE denote the set of potential existing tenants and
IN the set of potential new applicants; the set of potential agents I is partitioned into
the sets IE and IN .14

For each agent i ∈ I and set of houses H ⊆ H, let R(i,H) denote the set of all linear
orders over H ∪ {h0}.15 For each agent i ∈ I, we interpret Ri ∈ R(i,H) as agent i’s
(strict) preferences over houses in H and the null house h0; e.g., for h, h′, h′′ ∈ H, [Ri :
h Pi h

′ Pi h0 Pi h
′′ Pi . . .] means that agent i would first like to have house h, then to have h′,

and then i would prefer to have the null house h0 rather than house h′′, etc. An agent i ∈ I
finds a house h ∈ H acceptable if h Pi h0. We assume that every existing tenant i ∈ IE
finds the house that he already occupies acceptable, i.e., h(i) Pi h0. Let R(I,H) denote the
set of all preference profiles over H ∪ {h0} for agents in I, i.e., R(I,H) =

∏
i∈I R(i,H).

Given R ∈ R(I,H) and Ĩ ⊆ I, let RĨ denote the preference profile (Ri)i∈Ĩ ; it is the

restriction of R to the set of agents Ĩ. We also use the notation R−Ĩ = RI\Ĩ and
R−i = RI\{i}.

A house allocation problem with existing tenants is a list (I,H,R), where

(i) I ⊆ I is a finite set of agents,

(ii) H ⊆ H is a finite set of houses such that for each existing tenant i ∈ I ∩IE, h(i) ∈ H,
and

(iii) R = (Ri)i∈I ∈ R(I,H) is a preference profile.

Note that by (ii), if an existing tenant is present, then so is the house he occupies.

14In contrast to Sönmez and Ünver (2010) we do not require that there exists at least one house that is
not occupied by a potential existing tenant, i.e., we do not require |H| > |IE |.

15A linear order over H ∪ {h0} is a binary relation R̂ that is antisymmetric (for each h, h′ ∈ H ∪ {h0}, if

h R̂ h′ and h′ R̂ h, then h = h′), transitive (for each h, h′, h′′ ∈ H ∪ {h0}, if h R̂ h′ and h′ R̂ h′′, then h R̂ h′′),

and complete (for each h, h′ ∈ H ∪{h0}, hR̂h′ or h′ R̂h). By P̂ we denote the asymmetric part of R̂. Hence,

given h, h′ ∈ H ∪ {h0}, h P̂ h′ means that h is strictly preferred to h′; h R̂ h′ means that h P̂ h′ or h = h′

and that h is weakly preferred to h′.
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Let D denote the domain of all house allocation problems with existing tenants (house
allocation problems with existing tenants were introduced by Abdulkadiroğlu and Sönmez,
1999).

Given a problem (I,H,R) ∈ D, IE = IE ∩ I denotes the set of existing tenants,
IN = I \ IE = IN ∩ I denotes the set of new applicants, HO = {h(i)}i∈IE denotes the set
of occupied houses, and HV = H \HO denotes the set of vacant houses.

A house allocation problem with existing tenants is called a house allocation problem
with only new applicants when there are no existing tenants and hence no occupied
houses, i.e., IE = ∅ and HO = ∅. Let DN denote the domain of all house allocation
problems with only new applicants. A house allocation problem with only new applicants
is traditionally called a house allocation problem (house allocation problems were first
analyzed in Hylland and Zeckhauser, 1979).

A house allocation problem with existing tenants is called a house allocation problem
with only existing tenants when there are no new applicants and no vacant houses, i.e.,
IN = ∅ and HV = ∅. Let DE denote the domain of all house allocation problems with only
existing tenants. A house allocation problem with only existing tenants is traditionally called
a housing market (housing markets were first introduced by Shapley and Scarf, 1974).

We denote a generic domain by D (D ⊆ D). Note that we will not restrict agents’
preferences throughout this article, domain restrictions only focus on restrictions of the
ownership structure.

A matching for a house allocation problem with existing tenants (I,H,R) ∈ D is a
function µ : I → H ∪ {h0} such that no two agents are assigned to the same house in H,
i.e., for each h ∈ H, |µ−1(h)| ≤ 1 (the null house can be assigned to more than one agent).
Given a matching µ for (I,H,R) ∈ D and an agent i ∈ I, µ(i) ∈ (H ∪ {h0}) denotes the
house agent i is matched to under µ and is referred to as the allotment of agent i. For
each agent i ∈ I and matchings µ, µ′, we let µ Ri µ

′ if and only if µ(i) Ri µ
′(i), i.e., agents

only care about their own allotments but not how the remaining houses are allocated.

A rule φ on D is a function that associates with each problem (I,H,R) ∈ D a matching
φ(I,H,R). Given a problem (I,H,R) ∈ D, an agent i ∈ I, and a rule φ, φi(I,H,R) denotes
the allotment of agent i at matching φ(I,H,R). For a group of agents I ′ ⊆ I we define
φI′(I,H,R) :=

⋃
i∈I′ φi(I,H,R).

The first property of a rule we introduce is the well-known condition of Pareto-optimality.

Definition 1 (Pareto-Optimality). A matching µ is Pareto-optimal for problem
(I,H,R) ∈ D if there is no other matching µ′ for problem (I,H,R) such that for each
agent i ∈ I, µ′ Ri µ and for some j ∈ I, µ′ Pj µ. A rule φ on D is Pareto-optimal if it only
assigns Pareto-optimal matchings.

Next, we introduce voluntary participation conditions based on the idea that no existing
tenant can be forced to be assigned a house that is worse than the house he already occupies
and no agent can be forced to be matched to a house that is unacceptable to him.
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Definition 2 (Individual-Rationality). A matching µ is individually-rational for tenants
for problem (I,H,R) ∈ D if for each tenant i ∈ IE, µ(i)Rih(i). A matching µ is individually-
rational for problem (I,H,R) ∈ D if for each agent i ∈ I, µ(i) Ri h(i). A rule φ on
D is individually-rational (for tenants) if it only assigns individually-rational (for tenants)
matchings.

Note that Pareto-optimality and individual-rationality for tenants together imply
individual-rationality (since every existing tenant finds his occupied house acceptable and
if a new applicant receives an unacceptable allotment, then we can make him better off by
assigning the null house to him without making any other agent worse off). For simplicity
we use the stronger notion of individual-rationality but we could use the weaker version of
individual-rationality for tenants throughout.

The well-known non-manipulability property strategy-proofness requires that no agent
can ever benefit from misrepresenting his preferences.

Definition 3 (Strategy-Proofness). A rule φ on D is strategy-proof if for each problem

(I,H,R) ∈ D, each agent i ∈ I, and each preference relation R̃i ∈ R(i,H),

φi(I,H,R)Ri φi(I,H, (R̃i, R−i)).

The next property was introduced by Pápai (2000) to exclude joint preference manip-
ulation by two individuals who plan to swap objects ex post under the condition that the
collusion changed both their allotments and is self enforcing in the sense that neither agent
changes his allotment in case he misreports while the other agents reports the truth.

Definition 4 (Reallocation-Proofness). A rule φ on D is reallocation-proof if for each
problem (I,H,R) ∈ D and each pair of agents i, j ∈ I, there exist no preference relations

R̃i ∈ R(i,H) and R̃j ∈ R(j,H) such that

φj(I,H, (R̃i, R̃j, R−{i,j}))Ri φi(I,H,R),

φi(I,H, (R̃i, R̃j, R−{i,j})) Pj φj(I,H,R),

and
φk(I,H,R) = φk(I,H, (R̃k, R−k)) 6= φk(I,H, (R̃i, R̃j, R−{i,j})) for k = i, j.

Next, we formulate a consistency notion for house allocation with tenants (as introduced
by Sönmez and Ünver, 2010): if some agents leave a house allocation problem with tenants
with their allotments and possibly some unassigned houses are removed, as long as no tenant
is left behind while his occupied house is removed, the rule should allocate the remaining
houses among the agents who did not leave in the same way as in the original house allocation
problem with tenants. For house allocation problems with only new applicants (on DN),
consistency for house allocation problem with tenants implies reallocation-consistency10 as
introduced by Ehlers and Klaus (2006) as well as the standard consistency7 property (e.g.,
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Ehlers and Klaus, 2007; Ergin, 2000, 2002). We introduce some notation before defining
consistency.

For each agent i ∈ I, preference relation Ri ∈ R(i,H), and set of houses Ĥ ⊆ H,

let RĤ
i ∈ R(i, Ĥ) denote the restriction of Ri to houses in Ĥ ∪ {h0}, i.e., for each

h, ĥ ∈ Ĥ ∪{h0}, hRĤ
i ĥ if and only if hRi ĥ. Given fixed H ⊆ H, Ĥ  H, and Ri ∈ R(i,H),

we denote the restriction of Ri to houses in (H \ Ĥ)∪ {h0} by R−Ĥi , i.e., R
H\Ĥ
i = R−Ĥi . For

each Î ⊆ I and Ĥ ⊆ H, let RĤ
Î

= (RĤ
i )i∈Î denote the restriction of preference profile

R to agents in Î and houses in Ĥ ∪ {h0}.

Given a house allocation problem with tenants (I,H,R) ∈ D, Î ⊆ I, and Ĥ ⊆ H,

(Î , Ĥ, RĤ
Î

) is the restriction of (I,H,R) to agents in Î and houses in Ĥ∪{h0}. The

restricted problem (Î , Ĥ, RĤ
Î

) is a reduced problem, i.e., (Î , Ĥ, RĤ
Î

) ∈ D, if the occupied

houses of existing tenants in Î is the set of occupied houses in Ĥ, that is ĤO = ∪i∈ÎEh(i).

Definition 5 (Consistency). A rule φ on D is consistent if for each problem (I,H,R) ∈ D
and each removal of a set of agents Î  I together with their allotments under φ, Ĥ =
φÎ(I,H,R), and some unassigned houses H̃ ⊆ H that results in a reduced problem (I \
Î , H \ (Ĥ ∪ H̃), R

−(Ĥ∪H̃)

−Î
) ∈ D, it follows that for each agent i ∈ (I \ Î),

φi(I,H,R) = φi(I \ Î , H \ (Ĥ ∪ H̃), R
−(Ĥ∪H̃)

−Î
).

Note that consistency only imposes a restriction on a rule defined on D for reduced
problems that are in D.

We call a domain D ⊆ D closed (under reduction) if each reduced problem is in D
again, i.e., for each (I,H,R) ∈ D and each Î  I, if (I \ Î , H \(Ĥ∪H̃), R

−(Ĥ∪H̃)

−Î
) is a reduced

problem, then (I \ Î , H \ (Ĥ ∪ H̃), R
−(Ĥ∪H̃)

−Î
) ∈ D.

The domain of house allocation problems with existing tenants D, the domain of house
allocation problems with only new applicants DN , and the domain of house allocation prob-
lems with only existing tenants DE are each closed domains.

For house allocation problems with only new applicants, a well-known property that is
implied by consistency, called non-bossiness, requires that whenever a change in an agent’s
preference relation does not bring about a change in his allotment, it does not bring about
a change in anybody’s allotment (Satterthwaite and Sonnenschein, 1981).

Definition 6 (Non-Bossiness). A rule φ on D is non-bossy if for each problem (I,H,R) ∈
D, each agent i ∈ I, and each preference relation R̃i ∈ R(i,H), if φi(I,H,R) =

φi(I,H, (R̃i, R−i)), then φ(I,H,R) = φ(I,H, (R̃i, R−i)).
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Remark 1 (Consistency does not imply Non-Bossiness). For house allocation prob-
lems with only new applicants, we can easily see why consistency implies non-bossiness: If a
new applicant unilaterally changes his preferences such that he receives the same allotment,
then, since this allotment is a vacant house, in each of the two problems he can leave with
his allotment and two reduced problems in the domain of house allocation problems result.
These two problems are identical and hence have to have the same matching. Thus, by
consistency, also the matchings in the two original problems have to have been identical.

For house allocation problems with tenants, consistency does not imply non-bossiness
anymore. The reason is that if an agent i now unilaterally changes his preferences such that
he receives the same allotment, and this allotment is an occupied house, when leaving with
only the occupied house, its tenant is left behind and hence the resulting reduced problems
are not in the domain of house allocation with tenants problems and hence, consistency has
no bite. One then could try to remove the smallest set of tenants together with agent i such
that house allocation with tenants problems result. However, the set of removed tenants or
their allotments need not be the same and different reduced house allocation with tenants
problems might result. Again, we cannot conclude that the matchings in the two original
problems have to have been identical.

Strategy-proofness and non-bossiness together imply group strategy-proofness (see, e.g.,
Pápai, 2000).

Definition 7 (Group Strategy-Proofness). A rule φ on D is group strategy-proof if for

each problem (I,H,R) ∈ D, there is no group of agents Ĩ ⊆ I and no preference profile

R̃ ∈ R(Ĩ , H), such that for all i ∈ Ĩ, φi(I,H, (R̃, R−Ĩ) Ri φi(I,H,R) and for some j ∈ Ĩ,

φj(I,H, (R̃, R−Ĩ) Pj φj(I,H,R).

A recent survey (Thomson, 2016) discusses many other logical relationships of non-
bossiness with well-known normative or strategic properties.

3 Priority Structures and Top Trading Cycles Rules

Let ΠI denote all one-to-one functions from {1, . . . , |I|} to I. For each h ∈ H, πh ∈ ΠI

denotes the priority ordering for house h. Here agent πh(1) has the top priority at house
h, agent πh(2) has the second priority at h, and so on. By a slight abuse of notation we will
also denote the inverse function (πh)−1 by πh such that for an agent i ∈ I, πh(i) ∈ {1, . . . , |I|}
denotes his rank in the priority. For a set of agents I ⊆ I we define the restriction of πh to
I to be a one-to-one function πhI ∈ ΠI such that πhI (i) < πhI (j) if and only if πh(i) < πh(j). A
priority structure is a list π ≡ {πh | πh ∈ ΠI}h∈H of priority orderings, one for each house
in H. For a set of agents I ⊆ I, πI ≡ {πhI }h∈H denotes a restricted priority structure.
Note that πI = π.

We say that a priority structure π is adapted to the ownership structure if each
existing tenant has top priority at his own house, i.e., for each i ∈ IE, πh(i)(1) = i.
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Any priority structure π can be adapted to the ownership structure by moving every
existing tenant to the top of the priority ordering of his own house without changing the
ordering of other agents. Formally, for each priority structure π ≡ {πh | πh ∈ ΠI}h∈H the
ownership-adapted priority structure π̂ ≡ {π̂h | π̂h ∈ ΠI}h∈H is such that

(a) for each vacant house h ∈ HV , π̂h := πh and

(b) for each occupied house h(i) ∈ HO,

π̂h(i)(1) = i and

for each j, k ∈ I \ {i}, π̂h(i)(j) < π̂h(i)(k) if and only if πh(i)(j) < πh(i)(k).

Given a problem (I,H,R), a priority structure π, and a matching µ, we say that µ
violates the priority of agent i ∈ I for house h ∈ H if there exists an agent j ∈ I
such that µ(j) = h, πh(i) < πh(j), and h Pi µ(i), i.e., agent i has higher priority for house h
than agent j but j receives h and i justifiably envies j. A rule φ on D adapts to a priority
structure π if for each problem (I,H,R) ∈ D, φ(I,H,R) does not violate the priority of
any agent for any house.

For more general house allocation problems where each house can have multiple iden-
tical copies, the house allocation with quotas model (also known as school choice model),
Ergin (2002) and Kesten (2006) introduced acyclicity conditions for priority structures that
coincide for house allocation problems with only new applicants (on DN); see Lemma 6 in
Appendix C.3. We extend their acyclicity notion to house allocation problems with tenants.

Definition 8 (Acyclicity). For a set of agents I ⊆ I and a restricted priority structure πI
that is adapted to the ownership structure, πI is acyclic if for agents i, j, k ∈ I and houses
h, h′ ∈ H such that h′ is not owned by any of the three agents, i.e., h′ /∈ {h(i), h(j), h(k)},

πh(i) < πh(j) < πh(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

First, as already mentioned above, for house allocation problem with only new applicants
(on DN) our definition of acyclicity coincides with Ergin and Kesten acyclicity.16 Second, for
house allocation problem with only existing tenants (on DE), every priority structure that
is adapted to the ownership structure is acyclic (since there are no vacant houses).

The following is an example of an acyclic priority structure.

Example 1 (An Acyclic Priority Structure). Table 1 gives an example of an acyclic
priority structure π for a market with three existing tenants a, b, c, five new applicants
d, e, f, g, i and eight houses h(a), h(b), h(c), h1, h2, h3, h4, h5.

16In general, if a priority structure is Kesten acyclic, then it is also Ergin acyclic (note that in the more
general house allocation with quotas model additional “scarcity conditions” are used to define Ergin and
Kesten cycles).
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n πh(a)(n) πh(b)(n) πh(c)(n) πh1(n) πh2(n) πh3(n) πh4(n) πh5(n)

1 a b c d d d d d
2 d d d b b b b b
3 b c b c c c c c
4 c a e e a a e e
5 e e a a e e a a
6 f g f f f f g f
7 g f g g g g f g
8 i i i i i i i i

Table 1: An acyclic priority structure.

For each house allocation problem with tenants (I,H,R) ∈ D and each priority struc-
ture π we define the top trading cycles (TTC) rule based on priority structure π
recursively using Gale’s top trading cycles (TTC) algorithm (Shapley and Scarf, 1974,
attributed the TTC algorithm that finds a core allocation in housing markets to David Gale):

Input. A house allocation problem with tenants (I,H,R) ∈ D and a priority structure π.

Step 1. Let I1 := I and H1 := H. We construct a (directed) graph with the set of nodes
I1 ∪H1 ∪ {h0}.

For each agent i ∈ I1 we add a directed edge to his most preferred house in H1 ∪ {h0}.
For each directed edge (i, h) (i ∈ I1 and h ∈ H1) we say that agent i points to house h. For
each house h ∈ H1 we add a directed edge to the highest ranked agent in I1 in its priority
ordering, i.e., to πhI1(1). For the null house we add a directed edge to each agent in I1.

A trading cycle is a directed cycle in the graph. Given the finite number of nodes, at
least one trading cycle exists for the graph. We assign to each agent in a trading cycle the
house he points to and remove all trading cycle agents and houses. We define I2 to be the
set of remaining agents and H2 to be the set of remaining houses and, if I2 6= ∅, we continue
with Step 2. Otherwise we stop.

In general at Step t we have the following:

Step t. We construct a (directed) graph with the set of nodes It ∪Ht ∪ {h0} where It ⊆ I
is the set of agents that remain after Step t− 1 and Ht ⊆ H is the set of houses that remain
after Step t− 1.

For each agent i ∈ It we add a directed edge to his most preferred house in Ht ∪ {h0}.
For each house h ∈ Ht we add a directed edge to the highest ranked agent in It in its priority
ordering, i.e., to πhIt(1). For the null house we add a directed edge to each agent in It.

At least one trading cycle exists for the graph and we assign to each agent in a trading
cycle the house he points to and remove all trading cycle agents and houses. We define It+1

to be the set of remaining agents and Ht+1 to be the set of remaining houses and, if It+1 6= ∅,
we continue with Step t+ 1. Otherwise we stop.
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Output. The TTC algorithm terminates when all agents in I are assigned a house in
H ∪ {h0} (it takes at most |I| steps). We denote the house in H ∪ {h0} that agent i ∈ I
obtains in the TTC algorithm by ϕπi (I,H,R).

The TTC rule (on D) based on priority structure π, ϕπ, associates with each
problem (I,H,R) ∈ D the matching determined by the TTC algorithm.

The next example illustrates the TTC rule with the acyclic priority structure of Exam-
ple 1.

Example 2 (A TTC Rule). Let I = {a, b, c, d, e, f, g, i} and H =
{h(a), h(b), h(c), h1, h2, h3, h4, h5}. Agents IE = {a, b, c} are tenants. Consider the
preference profile R ∈ R(I,H) defined as in Table 2.

Ra Rb Rc Rd Re Rf Rg Ri

h1 h1 h(b) h(c) h1 h1 h1 h1

h2 h(b) h(c) h0 h(c) h2 h(a) h2

h(a) h5 h4 h0 h3

h0 h0 h0

Table 2: A preference profile.

We consider the TTC assignment with priority structure π given at Table 1 for problem
(I,H,R). Table 3 gives the set of agents and houses present in the steps of the TTC and
the top trading cycles that form in each step.

t It Ht ∪ {h0} trading cycles in Step t

1 {a, b, c, d, e, f, g, i} {h(a), h(b), h(c), h1, h2, h3, h4, h5, h0} [d, h(c), c, h(b), b, h1]
2 {a, e, f, g, i} {h(a), h2, h3, h4, h5, h0} [a, h2], [e, h5]
3 {f, g, i} {h(a), h3, h4, h0} [f, h4, g, h(a)]
4 {i} {h3, h0} [i, h3]

Table 3: Steps of the TTC algorithm.

In the final assignment µ = ϕπ(I,H,R), we have µ(a) = h2, µ(b) = h1, µ(c) = h(b),
µ(d) = h(c), µ(e) = h5, µ(f) = h4, µ(g) = h(a), and µ(i) = h3.

All TTC rules based on ownership-adapted priority structures are Pareto-optimal,
individually-rational, group strategy-proof, and reallocation-proof.

Proposition 1 (ϕπ: Pareto-Optimality, Individual-Rationality, Group Strate-
gy-Proofness, Reallocation-Proofness). For each priority structure π that is adapted
to the ownership structure, the TTC rule on domain D based on π, ϕπ, satisfies Pareto-
optimality, individual-rationality, group strategy-proofness, and reallocation-proofness.
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Proof. Individual-rationality of ϕπ follows from the facts that π is adapted to the ownership
structure and no agent points to a house that is unacceptable for him at any step of the TTC
algorithm. Pareto-optimality and group strategy-proofness follow from the well-known fact
that TTC rules satisfy these properties. In particular, each TTC rule based on a priority
structure is a “hierarchical exchange rule” and therefore satisfies Pareto-optimality, group
strategy-proofness, and reallocation-proofness (see Pápai, 2000).

The following example demonstrates that not all TTC rules based on ownership-adapted
priority structures are consistent.

Example 3 (Cyclic Priorities and Violation of Consistency). We provide a simple
example with a cyclic priority structure π and show that the TTC rule based on π violates
consistency.

Let (I,H,R) be a problem where I = {i, j, k} with i ∈ IE, H = {h, h(i)} with h ∈ HV ,
and preferences R = (Ri, Rj, Rk) are such that

• Ri : h Pi h(i) Pi h0,

• Rj : h(i) Pj h0 Pj h, and

• Rk : h(i) Pk h0 Pk h.

We consider a priority structure π restricted to I and H where πh(i)(i) < πh(i)(j) <
πh(i)(k) and πh(k) < πh(i) < πh(j). Note that the priority structure π is cyclic.

The TTC rule based on the priority structure π for problem (I,H,R) results in allotments
ϕπi (I,H,R) = h, ϕπj (I,H,R) = h0, and ϕπk(I,H,R) = h(i) (at Step 1 of the TTC algorithm,
agent i points to house h, house h points to agent k, agent k points to house h(i), and
house h(i) points to agent i, so house h is assigned to agent i and house h(i) is assigned to
agent k; and at Step 2, the null house h0 is assigned to agent j).

We now consider a reduced problem (I ′, H ′, R′) that is obtained from (I,H,R) by re-
moving agent i with his allotment ϕπi (I,H,R) = h. Therefore, I ′ = {j, k}, H ′ = {h(i)}
(now {h(i)} = H ′V ), and preferences are R′ = (RH′

j , R
H′

k ). The TTC rule based on the
priority structure π for problem (I ′, H ′, R′) results in allotments ϕπj (I ′, H ′, R′) = h(i) and
ϕπk(I ′, H ′, R′) = h0 (at Step 1 of the TTC algorithm agent j points to house h(i) and
house h(i) points to agent j who is the highest ranked agent in I ′ for house h(i), so house
h(i) is assigned to agent j; and at Step 2, the null house h0 is assigned to agent k).
For agent k we have ϕπk(I,H,R) = h(i) 6= h0 = ϕπk(I ′, H ′, R′) and for agent j we have
ϕπj (I,H,R) = h0 6= h(i) = ϕπj (I ′, H ′, R′). Hence, the TTC rule based on cyclic priority
structure π violates consistency.

The fact that the TTC rule based on a cyclic priority structure in Example 3 is not
consistent is not a coincidence: any TTC rule based on ownership-adapted priorities is
consistent if and only if the priority structure is acyclic.
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Theorem 1 (ϕπ: Consistency ⇔ π is Acyclic). Let π be a priority structure that is
adapted to the ownership structure and D be a closed domain. Then, the TTC rule based on
π on D, ϕπ, is consistent if and only if π is acyclic.

Proof. Let π be a priority structure that is adapted to the ownership structure and D be a
closed domain.

Only If Part: Assume that ϕπ is consistent. We show that then π is acyclic.

Assume for the sake of contradiction that π is cyclic. Hence, there exist agents i, j, k ∈ I
and houses h, h′ ∈ H with h′ /∈ {h(i), h(j), h(k)} such that

πh(i) < πh(j) < πh(k)

and
πh
′
(k) < πh

′
(i) and πh

′
(k) < πh

′
(j).

Since π is adapted to the ownership structure, if h ∈ {h(i), h(j), h(k)}, then h = h(i) (since
among the three agents agent i has the top priority for house h).

Consider the problem (I,H,R) where I = {i, j, k}, H∪{h0} = {h, h′, h(i), h(j), h(k), h0},
and preferences over individually-rational houses are such that

• Ri : h′ Pi h Ri h(i) Pi . . .,

• Rj : h Pj h
′ Pj h(j) Pj . . ., and

• Rk : h Pk h(k) Pk . . ..

Then, the TTC rule ϕπ assigns h′ to i, h to k (because agent i has the top priority for
house h, agent k has the top priority for house h′, and then they trade), and h(j) to j.
Next, consider the reduced problem (I ′, H ′, RH′

I′ ) that is created when agent i leaves with his
allotment h′, i.e., I ′ = {j, k} and H ′ ∪ {h0} = {h, h(i), h(j), h(k), h0}. Now, the TTC rule
ϕπ assigns h to j (because agent j has the top priority for house h in I ′ and house h is the
best house among H ′ for agent j) and h(k) to k; contradicting consistency.

If Part: Assume that π is acyclic. We show that then ϕπ is consistent.

Consider a problem (I,H,R) ∈ D and remove a set of agents Î ( I together with their

allotment Ĥ as well as some unassigned houses H̃ to obtain a reduced problem (I ′, H ′, RH′

I′ ) =(
I \ Î , H \ (Ĥ ∪ H̃), R

−(Ĥ∪H̃)

−Î

)
. That is, the occupied houses of existing tenants in I ′ is

the set of occupied houses in H ′: H ′O = ∪i∈I′Eh(i). We will show that for each j ∈ I ′,

ϕπj (I,H,R) = ϕπj (I ′, H ′, RH′

I′ ). It suffices to consider the following three cases (all other
cases can be obtained by iteratively applying these three cases):

Case 1. Only one unassigned house is removed: for h ∈ HV and h 6∈ ϕπI (I,H,R), Î = ∅,
Ĥ = ∅, and H̃ = {h}.
Case 2. A “trading cycle” [i1, h(i2), i2, . . . , iK , h(i1)] is removed: for 1 ≤ k ≤ K

with ϕπik(I,H,R) = h(ik+1), taking indices modulo K, Î = {i1, . . . , iK} ⊆ IE, Ĥ =

{h(i1), . . . h(iK)} ⊆ HO, and H̃ = ∅.
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Case 3. A recipient of a vacant house is removed together with his allotment: for h ∈ HV

with ϕπi (I,H,R) = h, Î = {i}, Ĥ = {h}, and H̃ = ∅.
In Case 1, note that during any step of the TTC algorithm with priorities π applied

to the problem (I,H,R), no agent points to house h; otherwise h would be assigned.
Thus, removing h from the problem does not change the outcome of the algorithm and
ϕπ(I,H,R) = ϕπ(I ′, H ′, RH′

I′ ).

In Case 2, consider a preference profile R̃ ∈ R(I,H) such that R̃−Î = R−Î and for each

i ∈ Î and each h ∈ H ′ \ {ϕπi (I,H,R), h(i)} we have

• R̃i : ϕπi (I,H,R) P̃i h(i) P̃i h.

Starting from problem (I,H,R), if any of the agents i ∈ Î changes his preferences from Ri

to R̃i, by strategy-proofness of the TTC rule, he will receive the same allotment before and
after. Then, by non-bossiness of the TTC rule, the allotments of all other agents will also
not change. This argument can be applied step by step for all agents in Î to move from
problem (I,H,R) to problem (I,H, R̃). Hence, by group strategy-proofness of the TTC

rule, we have ϕπ(I,H, R̃) = ϕπ(I,H,R). By the definition of preferences R̃, in the first step

of the TTC algorithm with priorities π applied to the problem (I,H, R̃), the trading cycle
[i1, h(i2), i2, . . . , iK , h(i1)] forms. After allocating houses according to this trading cycle and
after removing it, the problem becomes the reduced problem (I ′, H ′, RH′

I′ ). Note that other

trading cycles that formed in Step 1 for problems (I,H, R̃) will form again in Step 1 for the

reduced problem (I ′, H ′, RH′

I′ ). Thus, for each i ∈ I ′ we have ϕπi (I,H, R̃) = ϕπi (I ′, H ′, RH′

I′ ).

Since ϕπ(I,H,R) = ϕπ(I,H, R̃) this concludes the proof for Case 2.

In Case 3, consider a preference profile R̃ ∈ R(I,H) such that R̃i = Ri and for each

j ∈ I ′ = I \ {i} preferences R̃j are obtained from Rj by making house h unacceptable, i.e.,

h(j) P̃j h while leaving preferences over H ′ = H \ {h} unchanged and thus R̃H′

I′ = RH′

I′ .
Starting from problem (I,H,R), if any of the agents j ∈ I ′ changes his preferences from

Rj to R̃j, by strategy-proofness of the TTC rule, he will receive the same allotment before
and after. Then, by non-bossiness of the TTC rule, the allotments of all other agents will
also not change. This argument can be applied step by step for all agents in I ′ to move from
problem (I,H,R) to problem (I,H, R̃). Hence, by group strategy-proofness of the TTC rule,

we have ϕπ(I,H, R̃) = ϕπ(I,H,R). During the TTC algorithm with priorities π applied to

the problem (I,H, R̃), a trading cycle including i and h forms. Let [i1, h1, i2, h2, . . . , iK , hK ]
with i1 = i, h1 = h be this trading cycle and t the step in which it forms.

By the definition of preferences R̃, the same trading cycles form in the first t− 1 steps of
the TTC algorithm with priorities π applied to the two problems (I,H, R̃) and (I ′, H ′, R̃H′

I′ ).
Next, we consider Step t of the TTC algorithm with priorities π in the two problems.

If K = 1, i.e., if agent i points to h and house h points to i in Step t in problem
(I,H, R̃), then the only difference between the two problems is that in problem (I,H, R̃)
we have an additional trading cycle consisting of i and h. Otherwise, the same trading
cycles form in the two problems. Moreover, in the consecutive Steps t + 1, t + 2, . . . the
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same trading cycles form in the two problems. Thus, for each j ∈ I ′ = I \ {i}, we have

ϕπj (I ′, H ′, RH′

I′ ) = ϕπj (I,H, R̃) = ϕπj (I,H,R).

If K > 1, then we show that in Step t of the TTC algorithm applied to (I ′, H ′, RH′

I′ )
a trading cycle i2, h2, . . . , iK , hK forms. If this is true, then it follows immediately that all
other trading cycles in the two problems are the same and moreover, in the consecutive Steps
t+ 1, t+ 2, . . . the same trading cycles form in the two problems. To show that trading cycle
i2, h2, . . . , iK , hK forms, it suffices to show that hK points to i2 in Step t of the TTC algorithm
applied to problem (I ′, H ′, RH′

I′ ). Suppose not and house hK points to an agent j 6= i2. Then,
πhK (i1) < πhK (j) < πhK (i2). Note however that πh1(i2) < πh1(j) and πh1(i2) < πh1(i1), since
otherwise h1 = h would not point to i2 in Step t of the TTC algorithm with priorities π
applied to problem (I,H, R̃). Thus, there is a cycle in π, contradicting its acyclicity.

4 A Characterization

Our second main result is that TTC rules based on ownership-adapted acyclic priorities
are the only rules that satisfy Pareto-optimality, individual-rationality, strategy-proofness,
reallocation-proofness, and consistency.

Theorem 2 (A Characterization of ϕπ). Let D be a closed domain. Then, a rule
φ on D satisfies Pareto-optimality, individual-rationality, strategy-proofness, reallocation-
proofness, and consistency if and only if there exists an ownership-adapted acyclic priority
structure π such that φ = ϕπ.

We prove Theorem 2 through a sequence of lemmata (which we prove in Appendix A).
Let D be a closed domain such that for each R ∈ R(I,H), (I,H, R) ∈ D. Throughout the
remainder of the section we assume that rule φ on D satisfies Pareto-optimality, individual-
rationality, strategy-proofness, reallocation-proofness,17 and consistency.

Using Pareto-optimality and individual-rationality, we derive a priority structure π =
(πh)h∈H from φ.

For each house h ∈ H we call a preference profile in which each agent likes house h best
and only finds houses in {h, h(i)} individually-rational a version of a maximal conflict
preference profile for h. Formally, Rh ∈ R(I,H) is a version of a maximal conflict
preference profile for h if for each i ∈ I and h′ ∈ H \ {h, h(i)} we have

• Rh
i : h Rh

i h(i) P h
i h
′.

Note that there can be multiple versions of a maximal conflict preference profile for h that
differ in the ranking of houses that are not individually-rational. After we have defined πh we
will show that the definition is independent of which versions of maximal conflict preference
profiles we choose.

17However, note that reallocation-proofness is used only in the proof of Lemma 4.
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We consider the problem (I,H, Rh) where Rh is some version of a maximal conflict
preference profile. By Pareto-optimality, for some i ∈ I we have φi(I,H, Rh) = h. We
assign the top priority of house h to agent i, i.e., πh(1) = i.

Note that, by individual-rationality, if house h is occupied by an existing tenant i, then
agent i will have the top priority at house h, i.e., if for some i ∈ IE, h = h(i), then
πh(i)(1) = i. Hence, the priority structure π we are constructing will be adapted to the
ownership structure, i.e., for each i ∈ IE, πh(i)(1) = i.

We next remove agent πh(1) = i and consider the remaining maximal conflict problem (I\
{i},H, Rh

−i). Again, by Pareto-optimality, for some j ∈ I \{i} we have ϕj(I \{i},H, Rh
−i) =

h. We assign the second priority of house h to agent j, i.e., πh(2) = j. We next remove
agent πh(2) = j and consider the remaining maximal conflict problem (I \{i, j},H, Rh

−{i,j}),
etc. We iterate in this way until we have considered all agents in I. In this way we obtain
a priority ordering πh for each h ∈ H.

Next, we establish a sequence of lemmata about properties of π.

Lemma 1 (Maximal Conflict Preference Profile Independence). Each version of a
maximal conflict preference profile for a house together with rule φ induces the same priority
ranking for the house.

Lemma 2 (Consistent Reduction of Maximal Conflict Preference Profiles). Let
i, j ∈ I be two different agents and house h ∈ H. Consider a problem (I,H,R) ∈ D such that
I = {i, j}, {h, h(i), h(j)} ⊆ H ∪ {h0}, and R ∈ R(I,H) is a version of the maximal conflict
preference profile of h restricted to I and H. Then, πh(i) < πh(j) implies φi(I,H,R) = h
and φj(I,H,R) = h(j).

Lemma 3 (Acyclicity for Vacant Houses). Let i, j, k ∈ I be three different agents and
houses h, h′ ∈ H that are not owned by any of the three agents, i.e., h, h′ 6∈ {h(i), h(j), h(k)}.
Then,

πh(i) < πh(j) < πh(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

Lemma 4 (Acyclicity for Occupied Houses). Let i, j, k ∈ I be three different agents,
house h(i) ∈ H is occupied by agent i, and house h′ ∈ H is not owned by any of the three
agents, i.e., h′ 6∈ {h(i), h(j), h(k)}. Then,

πh(i)(i) < πh(i)(j) < πh(i)(k) implies [πh
′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

Lemmata 3 and 4 together imply that our constructed priority structure π is acyclic.
We are now ready to start proving that if a rule φ defined on a closed domain D satis-
fies Pareto-optimality, individual-rationality, strategy-proofness, reallocation-proofness, and
consistency, then it is a TTC rule based on ownership-adapted acyclic priorities, i.e., φ = ϕπ.
To this end, we first show that φ adapts to the priority structure π for top priority agents.

Lemma 5 (Top Priority Adaptation). For each problem (I,H,R) ∈ D, if agent i ∈ I
has the top priority in I for a vacant house h ∈ HV , i.e., for each j ∈ I \ {i}, πh(i) < πh(j),
then φi(I,H,R)Ri h.
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We now prove that rule φ is the TTC rule ϕπ.

Proposition 2 (φ = ϕπ). If a rule φ defined on a closed domain D satisfies Pareto-
optimality, individual-rationality, strategy-proofness, reallocation-proofness, and consis-
tency, then it is the TTC rule that is based on the ownership-adapted acyclic priority structure
π, i.e., φ = ϕπ.

Proof. Assume for the sake of contradiction that there is a problem (I,H,R) ∈ D such
that φ(I,H,R) 6= ϕπ(I,H,R). Consider the first Step t in which a trading cycle of agents
1, . . . , K and houses ϕπ1 (I,H,R), . . . , ϕπK(I,H,R) forms according to ϕπ that contains agents
that are differently matched than at φ(I,H,R). Consider the reduced problem (I ′, H ′, R′)
of (I,H,R) where all trading cycles of the first t − 1 steps are removed. By consistency,
for some k ∈ {1, . . . , K}, φk(I ′, H ′, R′) = φk(I,H,R) 6= ϕπk(I,H,R) = ϕπk(I ′, H ′, R′). Each
agent k ∈ {1, . . . , K} prefers ϕπk(I ′, H ′, R′) most among houses in H ′.

For every k ∈ {1, . . . , K} we define preferences R̃k ∈ R(k,H ′) over individually-rational
houses such that

• R̃k : ϕπk(I ′, H ′, R′) P̃k ϕ
π
k−1(I ′, H ′, R′) R̃k h(k) R̃k . . . (modulo K),

e.g., by moving ϕπk−1(I ′, H ′, R′) just after ϕπk(I ′, H ′, R′) and, if ϕπk−1(I ′, H ′, R′) 6= h(k) (i.e.,
when ϕπk−1(I ′, H ′, R′) is vacant), by moving h(k) just after ϕπk−1(I ′, H ′, R′) without changing
the ordering of other houses.

First, we consider the preference profile R0 = (R̃{1,...,K}, R
′
−{1,...,K}).

Let k ∈ {1, . . . , K}. If ϕπk−1(I ′, H ′, R′) = h(k), then by individual-rationality, we have
φk(I

′, H ′, R0) Rk ϕ
π
k−1(I ′, H ′, R′) and φk(I

′, H ′, R0) ∈ {ϕπk−1(I ′, H ′, R′), ϕπk(I ′, H ′, R′)}. If
ϕπk−1(I ′, H ′, R′) 6= h(k), then ϕπk−1(I ′, H ′, R′) is a vacant house and agent k has the top pri-
ority for it. Hence, by Lemma 5, we have φk(I

′, H ′, R0)Rkϕ
π
k−1(I ′, H ′, R′) and φk(I

′, H ′, R0) ∈
{ϕπk−1(I ′, H ′, R′), ϕπk(I ′, H ′, R′)}. To summarize, for each k ∈ {1, . . . , K}, φk(I ′, H ′, R0) ∈
{ϕπk−1(I ′, H ′, R′), ϕπk(I ′, H ′, R′)}. So, φ{1,...,K}(I,H,R

0) = ϕπ{1,...,K}(I
′, H ′, R′). By Pareto-

optimality, for each k ∈ {1, . . . , K}, φk(I,H,R0) = ϕπk(I ′, H ′, R′).

Next, let Î ⊆ {1, . . . , K}. By induction on the size of Î we will show that for each

k ∈ {1, . . . , K}, φk
(
I,H, (R̃{1,...,K}\Î , R−({1,...,K}\Î))

)
= ϕπk(I ′, H ′, R′).

Induction Basis. If |Î| = 0, i.e., Î = ∅, then the claim holds as observed above.

Induction Hypothesis. We assume that for each l ∈ {1, . . . , |K| − 1}, each Î ( {1, . . . , K}
with |Î| ≤ l, and each Rl = (R̃{1,...,K}\Î , R−({1,...,K}\Î)), we have that for each k ∈ {1, . . . , K},
φk(I,H,R

l) = ϕπk(I ′, H ′, R′).

Induction Step. Let l ∈ {0, . . . , |K| − 1}, Î ⊆ {1, . . . , K} with |Î| = l + 1, and Rl+1 =

(R̃{1,...,K}\Î , R−({1,...,K}\Î)). Let j ∈ Î and Rl = (R̃{1,...,K}\(Î\{j}), R−({1,...,K}\(Î\{j}))).

By the induction hypothesis, for each k ∈ {1, . . . , K}, φk(I,H,Rl) = ϕπk(I ′, H ′, R′). We
start by showing that φj(I,H,R

l+1) = ϕπj (I ′, H ′, R′). That is, when agent j changes his

preferences from R̃j to Rj at the preference profile Rl, house ϕπj (I ′, H ′, R′) is still assigned
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to him under rule φ at the changed preference profile Rl+1. By strategy-proofness we have
φj(I,H,R

l+1) Rj φj(I,H,R
l). Since φj(I,H,R

l) = ϕπj (I ′, H ′, R′) is agent j’s best house at
preference profiles Rl and Rl+1, we have φj(I,H,R

l+1) = φj(I,H,R
l) = ϕπj (I ′, H ′, R′).

Since the choice of agent j ∈ Î was arbitrary, we obtain φj(I,H,R
l+1) = ϕπj (I ′, H ′, R′)

for each j ∈ Î. By individual-rationality, for each k ∈ {1, . . . , K} \ Î, φk(I,H,R
l+1) ∈

{ϕπk−1(I ′, H ′, R′), ϕπk(I ′, H ′, R′)}. So, φ{1,...,K}(I,H,R
l+1) = ϕπ{1,...,K}(I

′, H ′, R′). By Pareto-

optimality, for each k ∈ {1, . . . , K}, φk(I,H,Rl+1) = ϕπk(I ′, H ′, R′).

Thus, if Î = {1, . . . , K}, then
(
I,H, (R̃{1,...,K}\Î , R−({1,...,K}\Î))

)
= (I ′, H ′, R′) and it

follows by induction that for each k ∈ {1, . . . , K}, φk(I ′, H ′, R′) = ϕπk(I ′, H ′, R′); a contra-
diction.

Finally, recall that by Proposition 1, the TTC rule ϕπ satisfies Pareto-optimality,
individual-rationality, strategy-proofness, and reallocation-proofness and by Theorem 1 and
the acyclicity of π (Lemmata 3 and 4), ϕπ is consistent. The proof of Theorem 2 is now
complete. We prove the independence of properties used in the characterization (Theorem 2)
in Appendix B.

5 Further Results

5.1 Results implied by Theorems 1 and 2

For house allocation problems with only existing tenants (on DE), we obtain the following
characterization of the core / TTC rule as a corollary; see Ma (1994, Theorem 1), Sönmez
(1999, Corollary 3), and Svensson (1999, Theorem 2).

Corollary 1 (Characterizing the Core on DE). A rule for house allocation problems
with only existing tenants (on DE) is Pareto optimal, individually rational (for tenants),
and strategy-proof if and only if it is the core.

Proof. For house allocation problems with only existing tenants (on DE), the core is unique
and it is the outcome of the TTC algorithm (Roth and Postlewaite, 1977, Theorem 2’).
Furthermore, any priority structure is acyclic. In fact, the only information that matters (in
the absence of vacant houses) is who owns which house. Thus, Lemma 4 immediately holds
for house allocation problems with only existing tenants. Thus, since reallocation-proofness
is only used in the proof of Lemma 4 (on acyclicity for occupied houses), it is now not needed
in the proof of Proposition 2. Note also that Lemma 5 (top priority adaptation) is only used
for vacant houses in the proof of Proposition 2. We now show that consistency is also not
needed in the proof of Proposition 2 and hence, Propositions 1 and 2 imply the result.

The minor adjustments to the proof of Proposition 2 needed to avoid the use of consis-
tency are marked in italics.

Proposition 2 Proof Adjustments without Consistency: Assume for the sake of
contradiction that there is a problem with only existing tenants (I,H,R) ∈ DE such that
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φ(I,H,R) 6= ϕπ(I,H,R). Consider the first Step t in which a trading cycle of agents 1, . . . , K
and houses ϕπ1 (I,H,R), . . . , ϕπK(I,H,R) forms according to ϕπ that contains agents that are
differently matched than at φ. Without loss of generality, we assume that also for all other
problems (I,H, R̂) the first such cycle occurs in Step t or later. Otherwise, we may choose
a different problem (I,H,R) with φ(I,H,R) 6= ϕπ(I,H,R) to start with. By our choice

of problem (I,H,R), we now know that at all other problems (I,H, R̂), agents are always
matched by φ according to the TTC rule in all earlier steps of the TTC algorithm.

For every k ∈ {1, . . . , K} we define preferences R̃k ∈ R(k,H) over individually-rational
houses such that

• R̃k : ϕπk(I,H,R) P̃k h(k) R̃k . . . (modulo K),

e.g., by moving h(k) = ϕπk−1(I,H,R) just after ϕπk(I,H,R).

First, we consider the preference profile R0 = (R̃{1,...,K}, R−{1,...,K}). Under R0, by our
choice of problem (I,H,R) and the definition of ϕπ, during the first t− 1 steps of the TTC
algorithm the same trading cycles as under R occur and the associated allotments made to
agents are the same under rules φ and ϕπ (and equal to the allotments made under R).

Let k ∈ {1, . . . , K}. Then, ϕπk−1(I,H,R) = h(k) and by individual-rationality, we
have φk(I,H,R

0) Rk ϕ
π
k−1(I,H,R) and φk(I,H,R

0) ∈ {ϕπk−1(I,H,R), ϕπk(I,H,R)}. So,
φ{1,...,K}(I,H,R

0) = ϕπ{1,...,K}(I,H,R). By Pareto-optimality, for each k ∈ {1, . . . , K},
φk(I,H,R

0) = ϕπk(I,H,R).

The remaining induction argument that completes the proof does not use consistency (or
any result relying on consistency) and hence remains valid (problem (I,H,R) now plays the
role of problem (I ′, H ′, R′)).

Kesten (2006) studied house allocation problems with quotas and showed that the TTC
rule adapted to the priority structure is consistent if and only if the priority structure satisfies
Kesten’s acyclicity condition (Kesten, 2006, Theorem 2). We obtain this result as a corollary
when the quota of each house is one (we discuss the related literature on acyclic priority
structures for house allocation with quotas problems in Appendix C.3).

Corollary 2 (TTC, Consistency, and Acyclicity on DN ). A TTC rule adapted to
the priority structure for house allocation problems with only new applicants (on DN) is
consistent if and only if the priority structure is Kesten acyclic.

Proof. For house allocation problems with only new applicants (on DN) Kesten’s scarcity
condition of acyclicity is automatically satisfied. Thus our acyclicity condition is equal to
Kesten acyclicity (on DN). Then, the result follows from Theorem 1.

For house allocation problems with only new applicants (on DN), we call a TTC rule
based on acyclic priorities an efficient priority rule.18 For house allocation problems
with only new applicants (on DN), Ehlers and Klaus (2006, Proposition 2 and Theorem 1)
characterized the class of efficient priority rules. We obtain their result as follows.

18A rule on DN adapts to the priority structure if and only if it chooses stable matchings, or equivalently,
no justified envy occurs; see also Balinski and Sönmez (1999, Theorem 2). Furthermore, a rule on DN
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Corollary 3 (Characterizing Efficient Priority Rules on DN ). A rule for house al-
location problems with only new applicants (on DN) is Pareto-optimal, strategy-proof, and
reallocation-consistent if and only if it is an efficient priority rule.

Proof. For house allocation problems with only new applicants (on DN), consistency implies
reallocation-consistency. Furthermore, acyclicity coincides with Kesten acyclicity and thus
the TTC rule based on acyclic priorities is the agents-proposing deferred acceptance rule
with acyclic priorities (Kesten, 2006, Theorem 1). Since acyclicity also coincides with Ergin
acyclicity, it follows that the agents-proposing deferred acceptance rule with acyclic priorities
satisfies Pareto-optimality (Ergin, 2002, Theorem 1) and therefore is an efficient priority
rule according to Ehlers and Klaus (2006). Thus, the class of TTC rules based on acyclic
priorities is the class of efficient priority rules. Since reallocation-proofness is only used in
the proof of Lemma 4 (on acyclicity for occupied houses), it is not needed in the proof
of Theorem 2 for the domain of house allocation problems with only new applicants DN .
Now, Theorem 2 for DN implies that a rule on DN satisfies Pareto-optimality, strategy-
proofness, and reallocation-consistency if and only if it is an efficient priority rule (note that
for Theorem 2 only individual-rationality for tenants was necessary).

5.2 A Representation of TTC Rules based on Ownership-Adapted
Acyclic Priorities as Two-Step Rules

Recall that for house allocation problems with only new applicants (on DN), we call a TTC
rule based on acyclic priorities an efficient priority rule. An efficient priority rule has the
property that at each step of the TTC algorithm, each trading cycle contains at most two
agents and two houses. That is, at each step of the TTC algorithm, either the top priorities
of remaining houses are assigned to exactly one agent (a dictator) or the top priorities of
remaining houses are divided between two agents. If there is an agent (a dictator) who has
top priority for all remaining houses then he gets his best house among the remaining houses.
If the top priorities of remaining houses are divided between two agents, then, at that step of
the TTC algorithm, either (i) both agents get a house for which they have the top priority,
or (ii) they swap two houses for which they have top priorities, or (iii) only one of them gets
one of his top priority houses and the other gets nothing. In the last case, the agent who
gets nothing becomes a dictator at the next step of the TTC algorithm because of acyclicity
of the priority structure.

Example 4 (Efficient Priority Rules). For house allocation problems with only new
applicants (on DN), the class of efficient priority rules is the subclass of TTC rules where
for each house allocation problem with only new applicants there is either one agent with

is an efficient priority rule if the assignment of houses to agents are determined by the agents-proposing
deferred acceptance rule and it adapts to an (Ergin) acyclic priority structure. Finally, since Ergin and
Kesten acyclicity coincide on DN (see Lemma 6 in Appendix C.3), the agents-proposing deferred acceptance
rule based on acyclic priorities is the TTC rule based on acyclic priorities. See Appendix C.3 for further
details.
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the highest priority for all houses or there are two agents who share the first and second
priorities of each house, i.e., the acyclic priority structure π is such that

• for each (I,H,R) ∈ DN there is an agent i ∈ I such that for each h ∈ H, πhI (1) = i,
or there are two agents i, j ∈ I such that for each h ∈ H, {πhI (1), πhI (2)} = {i, j}.

For more general house allocation problems with existing tenants, TTC rules based on
ownership-adapted acyclic priorities have the property that at each step of the TTC algo-
rithm at most two new applicants and two vacant houses are involved in a trading cycle. A
very natural subclass of TTC rules based on ownership-adapted acyclic priorities is the class
of rules where at each step of the TTC algorithm, at most one trading cycle involving a vacant
house appears and this trading cycle contains at most one new applicant and at most one
vacant house. This class was introduced under the name of YRMH-IGYT (you request
my house - I get your turn) rules by Abdulkadiroğlu and Sönmez (1999). Sönmez and
Ünver (2010) showed that a rule satisfies Pareto-optimality, individual-rationality, strategy-
proofness, weak neutrality, and consistency if and only if it is a YRMH-IGYT rule.

Example 5 (YRMH-IGYT Rules). The class of YRMH-IGYT rules is the subclass of
TTC rules based on ownership-adapted acyclic priorities where for each problem there is a
single agent who has top priority at each vacant house, i.e., the priority structure π is such
that

(i) for each problem (I,H,R) ∈ D and for each i ∈ IE, π
h(i)
I (1) = i and

(ii) for each problem (I,H,R) ∈ D there exists an agent i ∈ I such that for each h ∈ HV ,
πhI (1) = i.

Another way to describe the set of YRMH-IGYT rule is as follows. Let π be a serial
dictatorship priority structure. Then, for any h, h′ ∈ H, πh = πh

′
, i.e., every house has the

same priority ordering. Let π̂ denote the priority structure obtained from π by adapting it
to the ownership structure. It is easy to see that, since π̂ is based on a serial dictatorship
priority structure, it is acyclic. Then, a rule φ is a YRMH-IGYT rule if and only if there
exists a serial dictatorship priority structure π such that φ = ϕπ̂.

Next we give an alternative description of TTC rules based on ownership-adapted acyclic
priorities in terms of two specific rules, YRMH-IGYT and efficient priority rules, that are
applied in two steps. That is, the class of TTC rules based on ownership-adapted acyclic
priorities is equivalent to a class of two-step rules. Essentially, these rules can be described
as follows: The agents are split into two groups, where the first group contains all existing
tenants and some new applicants and the second group consists of only new applicants. In
the first step, houses are allocated to the first group of agents according to - essentially - the
YRMH-IGYT rule. In the second step, houses that have not been allocated in the first step
are allocated to the second group of agents according to an efficient priority rule.

We used the term “essentially” in the previous paragraph, because the allocation in the
first step is generated according to a rule that might slightly differ from a YRMH-IGYT
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rule because we allow for the possibility that two agents have top priority at different vacant
houses in steps of the TTC where only these two agents are left in the problem. Formally,
we define a TTC rule φπ based on ownership-adapted acyclic priorities π to be an almost
YRMH-IGYT rule if

(i) for each problem (I,H,R) ∈ D and for each i ∈ IE, π
h(i)
I (1) = i and

(ii) for each problem (I,H,R) ∈ D with |I| > 2 there exists an agent i ∈ I such that for
each h ∈ HV , πhI (1) = i.

That is, for each problem each existing tenant has the top priority for his own house and
for each problem with more than two agents there exists an agent who has top priority for
all vacant houses. This means that, since domain D is closed, at each step of the TTC
algorithm an existing tenant has the top priority for his own house and at each step of the
TTC algorithm with more than two remaining agents there exists an agent who has top
priority for all remaining vacant houses. Note that then the difference between a YRMH-
IGYT rule and an almost YRMH-IGYT rule is that for the latter rule, the underlying
priorities are only almost serial dictatorship priorities because the two lowest ranked agents
might share ownership of remaining vacant houses. For problems with a large number of
agents, such a rule behaves essentially like a YRMH-IGYT rule.

Example 6 (An almost YRMH-IGYT rule). Consider agents I := {a, b, c, d, e} with
IE = {a, b, c}, houses {h(a), h(b), h(c), h1, h2, h3, h4, h5} and the following priority structure:

n πh(a)(n) πh(b)(n) πh(c)(n) πh1(n) πh2(n) πh3(n) πh4(n) πh5(n)

1 a b c d d d d d
2 d d d b b b b b
3 b c b c c c c c
4 c a e e a a e e
5 e e a a e e a a

Table 4: An acyclic priority structure: the top part of the priorities of Table 1.

Note that the TTC algorithm based on Table 4 priorities assigns allotments equal to
the YRMH-IGYT rule for any Step t with |It| > 2. However, for a last Step t with It =
{a, e}, the TTC algorithm might assign different allotments because agents a and e have
different priorities at different vacant houses (the YRMH-IGYT rule would assign priorities
dictatorially at that step as well).

Definition 9 (Two-Step Rules). A rule φ defined on domain D is a two-step rule if
there are

• a partition of the set of agents I = I1∪I2 such that the first group contains all tenants
IE ⊆ I1 and

• rules φ1 and φ2 such that
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rule φ1 is an almost YRMH-IGYT rule that is defined for all problems (I,H,R) ∈ D
with I ⊆ I1 and

rule φ2 is a efficient priority rule that is defined for all problems (I,H,R) ∈ D with
I ⊆ I2,

and these rules are applied in two steps as follows:

Step 1. for each (I,H,R) ∈ D and each i ∈ I1 := I1∩I we have φi(I,H,R) = φ1
i (I1, H,RI1)

and

Step 2. for each i ∈ I2 := I2 ∩ I we have φi(I,H,R) = φ2
i (I2, H \ Ĥ, RI2) where Ĥ :=

φI1(I,H,R).

Example 7 (A TTC Rule based on Ownership-Adapted Acyclic Priorities as a
Two-Step Rule). We reconsider the TTC rule based on ownership-adapted acyclic priorities
π defined by Table 1 that we discussed in Example 2. It can be reinterpreted as a two-step
rule as follows: To determine the first group of agents I1, we consider the lowest priority
that any tenant has for any house. For the priorities π given in Table 1, this lowest priority
of 5 is given to tenant a (e.g., for house h1). Then, we consider all agents that have as least
as high a priority at all houses: I1 := {j ∈ I | πh(j) ≤ 5 for all h ∈ H} = {a, b, c, d, e}. The
remaining agents form the second group I2 := {f, g, i}.

The rule φ1 is the almost YRMH-IGYT rule based on Table 4 priorities previously de-
scribed in Example 6. Rule φ2 is now defined through the (acyclic) priorities consisting of
the last three rows of Table 1:

n πh(a)(n) πh(b)(n) πh(c)(n) πh1(n) πh2(n) πh3(n) πh4(n) πh5(n)

1 f g f f f f g f
2 g f g g g g f g
3 i i i i i i i i

Table 5: An acyclic priority structure: the bottom part of the priorities of Table 1.

Note that for any problem (I,H,R) ∈ D with I ⊆ I2 the TTC rule based on Table 5
priorities is an efficient priority rule.

We now show that the correspondence between TTC rules based on ownership-adapted
acyclic priorities and two-step rules holds in general.

Proposition 3 (Characterizing TTC Rules based on Ownership-Adapted Acyclic
Priorities as Two-Step Rules). The class of TTC rules based on ownership-adapted
acyclic priorities is the class of two-step rules.

Proof. Let φπ be a TTC rule based on ownership-adapted acyclic priorities π. Consider the
lowest priority assigned to a tenant at π, i.e., m := maxh∈H,i∈IE π

h(i). Let i∗ ∈ IE be a tenant
and h∗ ∈ H be a house such that πh

∗
(i∗) = m. We define the set I1 to be the set of agents who
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have higher or equal priority for house h∗ than agent i∗, i.e., I1 := {j ∈ I | πh∗(j) ≤ m}.
The set I2 is the set of agents who have lower priority for house h∗ than agent i∗, i.e.,
I2 := {j ∈ I | πh∗(j) > m} = I \ I1. By definition, the two sets are disjoint, we have
IE ⊆ I1, and I = I1 ∪ I2.

First we show that agents in I1 have higher priority than agents in I2 at all houses,
i.e., for each h ∈ H we have I1 = {j ∈ I | πh(j) ≤ m} and I2 = {j ∈ I | πh(j) > m}.
Consider j ∈ I1 \ {i∗} and k ∈ I2 and assume by contradiction that there is a house
h ∈ H with πh(k) < πh(j). Since πh

∗
(j) < πh

∗
(i∗) < πh

∗
(k) and k /∈ IE, acyclicity and

πh(k) < πh(j) imply that πh(i∗) < πh(k) < πh(j). Moreover, since πh(i∗) < πh(k) < πh(j)
and πh

∗
(j) < πh

∗
(i∗), acyclicity implies that h∗ is occupied with j as a tenant. Since i∗’s

priority at h∗ is the lowest priority of any tenant at any house, tenant j cannot have lower
priority at h than i∗ has at h∗, i.e., πh(j) ≤ πh

∗
(i∗). Thus, there exists an agent ` with

πh
∗
(j) < πh

∗
(`) < πh

∗
(i∗) < πh

∗
(k) and πh(i∗) < πh(k) < πh(j) < πh(`). But then agents

k, j, ` with houses h, h∗ form a cycle; a contradiction.

Next let k ∈ I2 and suppose there is a house h ∈ H with πh(k) < πh(i∗). We may
assume that there is another agent j ∈ I1 with πh

∗
(j) < πh

∗
(i∗) and πh(i∗) < πh(j).

Otherwise i∗ would have lower priority at h than at h∗. But since k /∈ IE, we immediately
get a contradiction with acyclicity.

Second, we show that the rule φπ restricted to problems with agents in I1 is an almost
YRMH-IGYT rule and restricted to problems with agents in I2 is an efficient priority rule.
This will imply that φπ is a two-step rule. Thus, we have to show that

• for each (I,H,R) ∈ D with I ⊆ I1 and |I| > 2 there is an agent i ∈ I such that for
each h ∈ HV , πhI (i) = 1,

• for each (I,H,R) ∈ D with I ⊆ I2 there is an agent i ∈ I such that for h ∈ H, πhI (1) =
i, or there are two agents i, j ∈ I such that for each h ∈ H, {πhI (1), πhI (2)} = {i, j}.

Since I2 contains only new applicants and the priority structure π is acyclic, the second item
follows immediately from the fact that for house allocation problems with only new applicants
the class of TTC rules based on acyclic priorities is the class of efficient priority rules. To
show the first item, consider the problem (I ′, H ′, R′) with I ′ = I ∪{i∗}, H ′ = H ∪{h(i∗), h∗}
and R′ arbitrary. Let j := π

h(i∗)
I′ (2). We claim that at any h ∈ HV we have πhI (j) = 1. The

claim trivially holds if h = h(i∗). If h 6= h(i∗), then by acyclicity we have πhI′(1) ∈ {i∗, j}.
If πhI′(1) = j, then also πhI (1) = j and we are finished. Thus, it suffices to show that
πhI′(1) = i∗ yields a contradiction. Since |I| > 2, there is an agent k 6= i∗, j in the problem
(I ′, H ′, R′). Since I ′ ⊆ I1 and i∗ has lowest priority among agents in I1 at house h∗, we have
πh
∗
(k) < πh

∗
(i∗) and πh

∗
(j) < πh

∗
(i∗). Thus, if πhI′(i

∗) = 1, then we have a cycle involving
houses h, h∗ and agents i∗, j, k and hence, a contradiction.

Finally, let φ be a two-step rule induced by rules φ1 and φ2. Let π1 be the priority
structure associated with rule φ1 and π2 be the priority structure associated with rule φ2.
Define a priority structure π as the concatenation of the two priority structures, i.e., for each
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h ∈ H we let

πh(i) =

{
π1,h(i), if i ∈ I1

π2,h(i) + |I1|, if i ∈ I2.

Since π1 and π2 are acyclic priority structures, priority structure π is acyclic as well. More-
over, φ = φπ.

Appendix

A Proofs of Section 4 Lemmata

Proof of Lemma 1 (Maximal Conflict Preference Profile Independence). Let Rh

and R̄h be different versions of a maximal conflict preference profile for h and πh and π̄h be
the corresponding priority rankings obtained. We show that for each i ∈ {1, 2, . . . , |I|} we
have πh(i) = π̄h(i). We proceed by induction on i.

Induction Basis. Let i = 1 and suppose πh(1) 6= π̄h(1), i.e., φπh(1)(I,H, Rh) = h
but φπ̄h(1)(I,H, R̄h) = h. By individual-rationality, φπ̄h(1)(I,H, Rh) = h(π̄h(1)) and
φπh(1)(I,H, R̄h) = h(πh(1)).

First, consider the reduced problem (I,H,R) of (I,H, Rh) where I = {πh(1), π̄h(1)},
H ∪ {h0} = {h, h(πh(1)), h(π̄h(1)), h0} and R = (Rh)HI . Note that (I,H,R) ∈ D. By
consistency, φπh(1)(I,H,R) = h.

Second, consider the reduced problem (I,H, R̄) of (I,H, R̄h) where I and H are defined
as before and R̄ = (R̄h)HI . Note that (I,H, R̄) ∈ D. By consistency, φπ̄h(1)(I,H, R̄) = h.

Third, starting from (I,H,R), change agent πh(1)’s preferences to R̄πh(1).
By strategy-proofness, φπh(1)(I,H, (R̄πh(1), Rπ̄h(1))) = h. By individual-rationality,
φπ̄h(1)(I,H, (R̄πh(1), Rπ̄h(1))) = h(π̄h(1)).

Fourth, starting from (I,H, (R̄πh(1), Rπ̄h(1))) change agent π̄h(1)’s preferences to R̄π̄h(1).
This change results in preference profile R̄. By strategy-proofness, φπ̄h(1)(I,H, R̄) =
h(π̄h(1)). By Pareto-optimality, φπh(1)(I,H, R̄) = h; contradicting φπ̄h(1)(I,H, R̄) = h.

Induction Hypothesis. We assume that for each i′ ≤ i < |I| we have πh(i′) = π̄h(i′).

Induction Step. We show that πh(i+ 1) = π̄h(i+ 1). Suppose πh(i+ 1) 6= π̄h(i+ 1).

Consider the problem (I,H, Rh
I ) where I = I \ {πh(1), . . . , πh(i)} and the problem

(Ī ,H, R̄h
Ī
) where Ī = I \ {π̄h(1), . . . , π̄h(i)}. Note that (I,H, Rh

I ), (Ī ,H, R̄h
Ī
) ∈ D. By

the induction assumption I = Ī. Hence, φπh(i+1)(I,H, Rh
I ) = h but φπ̄h(i+1)(I,H, R̄h

I ) = h.
By individual-rationality, we have φπ̄h(i+1)(I,H, Rh

I ) = h(π̄h(i+ 1)) and φπh(i+1)(I,H, R̄h
Ī
) =

h(πh(i+ 1)).

First, consider the reduced problem (I ′, H ′, R) of (I,H, Rh
I ) where I ′ = {πh(i+ 1), π̄h(i+

1)}, H ′ ∪ {h0} = {h, h(πh(i + 1)), h(π̄h(i + 1)), h0} and R = (Rh)H
′

I′ . By consistency,
φπh(i+1)(I

′, H ′, R′) = h.

26



Second, consider the reduced problem (I ′, H ′, R̄) of (Ī ,H, R̄h
Ī
) where I ′ and H ′ are defined

as before and R̄ = (R̄h)H
′

I′ . By consistency, φπ̄h(i+1)(I
′, H ′, R̄) = h.

An analog argument as for the induction basis shows that when changing preferences
step by step from R to R̄, Pareto-optimality, individual-rationality, and strategy-proofness
imply that φπh(i+1)(I,H, R̄) = h; contradicting φπ̄h(i+1)(I,H, R̄) = h.

Proof of Lemma 2 (Consistent Reduction of Maximal Conflict Preference Profiles).
Let i, j ∈ I be two different agents and house h ∈ H and problem (I,H,R) ∈ D be such
that I = {i, j}, {h, h(i), h(j)} ⊆ H ∪ {h0}, and R ∈ R(I,H) is a version of the maximal
conflict preference profile of h restricted to I and H. We show that πh(i) < πh(j) implies
φi(I,H,R) = h and φj(I,H,R) = h(j).

Recall that πh is generated by a version of a maximal conflict preference profile for house
h. By Lemma 1, it is no loss of generality to assume that this maximal conflict preference
profile is a preference profile Rh ∈ R(I,H) such that R is its restriction to I and H, i.e.,
(Rh)HI = R.

By our construction to calibrate πh, there exists a set of agents Ĩ :=(
I \ {πh(1), . . . , πh(l)}

)
such that i, j ∈ Ĩ, agent i has the highest priority for house h

in Ĩ, i.e., πh(l + 1) = i, and φi(Ĩ ,H, Rh
Ĩ
) = h. By individual-rationality, for all k ∈ Ĩ \ {i}

we have φk(Ĩ ,H, Rh
Ĩ
) = h(k); in particular, φj(Ĩ ,H, Rh

Ĩ
) = h(j).

Note that (I,H,R) is a reduced problem of (Ĩ ,H, Rh
Ĩ
) obtained by removing all agents

Ĩ \ {i, j} with their allotments
⋃
k∈
(
Ĩ\{i,j}

) h(k) = H̃ and also by removing all unassigned

houses h̃ ∈ (H \ H̃) \ H that are not occupied by remaining agents i and j, i.e., h̃ /∈
{h(i), h(j)}. By consistency, φi(I,H,R) = φi(Ĩ ,H, Rh

Ĩ
) and φj(I,H,R) = φj(Ĩ ,H, Rh

Ĩ
).

Hence, φi(I,H,R) = h and φj(I,H,R) = h(j).

Proof of Lemma 3 (Acyclicity for Vacant Houses). Let i, j, k ∈ I be three different
agents and houses h, h′ ∈ H that are not owned by any of the three agents, i.e., h, h′ 6∈
{h(i), h(j), h(k)}. We show that πh(i) < πh(j) < πh(k) implies [πh

′
(i) < πh

′
(k) or πh

′
(j) <

πh
′
(k)].

Assume for the sake of contradiction that πh(i) < πh(j) < πh(k), πh
′
(k) < πh

′
(i)

and πh
′
(k) < πh

′
(j). Consider the problem (I,H,R) where I = {i, j, k}, H ∪ {h0} =

{h, h′, h(i), h(j), h(k), h0}, and preferences over individually-rational houses are such that

• Ri : h′ Pi h Pi h(i) Pi . . .,

• Rj : h Pj h(j) Pj . . ., and

• Rk : h Pk h
′ Pk h(k) Pk . . ..

By Pareto-optimality and individual-rationality, either φi(I,H,R) = h′ or φk(I,H,R) = h′.

Case 1. φi(I,H,R) = h′.

By Pareto-optimality, either φj(I,H,R) = h or φk(I,H,R) = h.
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Case 1.1. If φj(I,H,R) = h, then consider the reduced problem (I ′, H ′, RH′

I′ ) that is cre-
ated when agent j leaves with his allotment h and furthermore (by individual-rationality)
the unassigned house h(j) is deleted from the problem, i.e., I ′ = {i, k} and H ′ ∪ {h0} =
{h′, h(i), h(k), h0}. By consistency, φi(I

′, H ′, RH′

I′ ) = h′. However, note that RH′

I′ is the re-
striction of a maximal conflict preference profile for h′ to I ′ and H ′. Hence, by Lemma 2,
πh
′
(k) < πh

′
(i) implies φk(I

′, H ′, RH′

I′ ) = h′; a contradiction.

Case 1.2. If φk(I,H,R) = h, then consider the reduced problem (I ′, H ′, RH′

I′ ) that is cre-
ated when agent i leaves with his allotment h′ and furthermore (by individual-rationality)
the unassigned house h(i) is deleted from the problem, i.e., I ′ = {j, k} and H ′ ∪ {h0} =
{h, h(j), h(k), h0}. By consistency, φk(I

′, H ′, RH′

I′ ) = h. However, note that RH′

I′ is the re-
striction of a maximal conflict preference profile for h to I ′ and H ′. Hence, by Lemma 2,
πh(j) < πh(k) implies φj(I

′, H ′, RH′

I′ ) = h; a contradiction.

Case 2. φk(I,H,R) = h′.

By Pareto-optimality, φj(I,H,R) = h. Consider the reduced problem (I ′, H ′, RH′

I′ ) that is
created when agent k leaves with his allotment h′ and furthermore (by individual-rationality)
the unassigned house h(k) is deleted from the problem, i.e., I ′ = {i, j} and H ′ ∪ {h0} =
{h, h(i), h(j), h0}. By consistency, φj(I

′, H ′, RH′

I′ ) = h. However, note that RH′

I′ is the
restriction of a maximal conflict preference profile for h to I ′ and H ′. Hence, by Lemma 2,
πh(i) < πh(j) implies φi(I

′, H ′, RH′

I′ ) = h; a contradiction.

Proof of Lemma 4 Acyclicity for Occupied Houses. Let i, j, k ∈ I be three different
agents, h(i) ∈ H is occupied by agent i, and house h′ ∈ H is not owned by any of the
three agents, i.e., h′ 6∈ {h(i), h(j), h(k)}. We show that πh(i)(i) < πh(i)(j) < πh(i)(k) implies
[πh

′
(i) < πh

′
(k) or πh

′
(j) < πh

′
(k)].

Assume for the sake of contradiction that πh(i)(i) < πh(i)(j) < πh(i)(k), πh
′
(k) < πh

′
(i),

and πh
′
(k) < πh

′
(j). Consider the problem (I,H,R) where I = {i, j, k}, H ∪ {h0} =

{h′, h(i), h(j), h(k), h0}, and preferences over individually-rational houses are such that

• Ri : h′ Pi h(i) Pi . . .,

• Rj : h(i) Pj h(j) Pj . . ., and

• Rk : h(i) Pk h
′ Pk h(k) Pk . . ..

By Pareto-optimality and individual-rationality, either φi(I,H,R) = h′ or φk(I,H,R) = h′.

Case 1. φi(I,H,R) = h′.

By Pareto-optimality, either φj(I,H,R) = h(i) or φk(I,H,R) = h(i).

Case 1.1. If φj(I,H,R) = h(i), then φk(I,H,R) = h(k). Now, consider R̃i ∈ R(i,H),

R̃j ∈ R(j,H), and R̃k ∈ R(k,H) such that

• R̃i : h(i) P̃i . . .,

• R̃j : h′ P̃j h(j) Pk . . ., and
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• R̃k : h′ P̃k h(k) Pk . . ..

First, consider R1 = (Ri, Rj, R̃k). By strategy-proofness, φk(I,H,R
1) = h(k) and by con-

sistency, φi(I,H,R
1) = h′ and φj(I,H,R

1) = h(i). Second, consider R2 = (R̃i, R̃j, R̃k). By
individual-rationality, φi(I,H,R

2) = h(i). Then, consistency, Lemma 2, and πh
′
(k) < πh

′
(j)

imply φk(I,H,R
2) = h′ and φj(I,H,R

2) = h(j). We now show that agents i and j by chang-

ing their preferences from (R̃i, R̃j) at R2 to (Ri, Rj) at R1 cause a violation of reallocation-
proofness.

Consider agent i changing his preferences at R2 from R̃i to Ri. The resulting preference
profile R3 = (Ri, R̃j, R̃k) is a version of a maximal conflict preference profile for house h′ and
Lemmata 1 and 2 together with πh

′
(k) < πh

′
(i) and πh

′
(k) < πh

′
(j) imply φk(I,H,R

3) = h′

and φi(I,H,R
3) = φi(I,H,R

2) = h(i). Hence, agent i does not change his allotment by
unilaterally moving from R2 to R3.

Consider agent j changing his preferences at R2 from R̃j to Rj. The resulting preference

profile is R4 = (R̃i, Rj, R̃k). By individual-rationality, φi(I,H,R
4) = h(i). Hence, by

individual-rationality, φj(I,H,R
4) = h(j). Hence, agent j does not change his allotment by

unilaterally moving from R2 to R4.
Finally, consider both agents i and j changing their preferences at the same time, moving

from R2 to R1, and then swapping their allotments. Then, agent i receives the same allotment
φj(I,H,R

1) = h(i) = φi(I,H,R
2) while agent j is better off receiving φi(I,H,R

1) = h′ P̃j
h(j) = φj(I,H,R

2); a contradiction to reallocation-proofness.

Case 1.2. If φk(I,H,R) = h(i), then consider the reduced problem (I ′, H ′, RH′

I′ ) that
is created when agent i leaves with his allotment h′, i.e., I ′ = {j, k} and H ′ ∪ {h0} =
{h(i), h(j), h(k), h0}. By consistency, φk(I

′, H ′, RH′

I′ ) = h. However, note that RH′

I′ is the
restriction of a maximal conflict preference profile for h to I ′ and H ′. Hence, by Lemma 2,
πh(i)(j) < πh(i)(k) implies φj(I

′, H ′, RH′

I′ ) = h(i); a contradiction.

Case 2. φk(I,H,R) = h′.

By individual-rationality, φi(I,H,R) = h(i), contradicting Pareto-optimality (agents i
and k would like to swap allotments).

Proof of Lemma 5 (Top Priority Adaptation). Let (I,H,R) ∈ D and assume that
agent i ∈ I has the top priority in I for a vacant house h ∈ HV , i.e., for each j ∈ I \ {i},
πh(i) < πh(j). We show that then φi(I,H,R)Ri h.

Assume for the sake of contradiction that hPiφi(I,H,R). By strategy-proofness, assume
without loss of generality that agent i’s preferences are the reduction of a version of the

maximal conflict preferences for h, i.e., Ri =
(
Rh
i

)H
(if that wasn’t the case, then agent i

could switch to maximal conflict preferences and still not receive house h). By individual-
rationality, h 6= h(i) and φi(I,H,R) = h(i).

By Pareto-optimality, there is an agent j1 such that φj1(I,H,R) = h. By strategy-
proofness, assume without loss of generality that agent j1’s preferences are the reduction of

a version of the maximal conflict preferences for h, i.e., Rj1 =
(
Rh
j1

)H
(if that wasn’t the
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case, then agent j1 could switch to maximal conflict preferences and still receive house h
while agent i still does not receive it).

In addition, assume that (I,H,R) ∈ D is a smallest such problem in terms of the number
of agents, i.e., there is no problem with fewer agents and with a priority violation involving
a top priority agent. This assumption and consistency imply that there are agents j1, . . . , jl
(possibly l = 1) such that φj1(I,H,R) = h, φj2(I,H,R) = h(j1) ∈ HO, φj3(I,H,R) =
h(j2) ∈ HO, . . . , φjl(I,H,R) = h(jl−1) ∈ HO and either h(jl) = h0 or h(jl) ∈ HO; but
there is no k ∈ I such that φk(I,H,R) = h(jl). Furthermore, I = {i, j1, . . . , jl} (if not,
by consistency, we could reduce the problem and obtain a top priority violation with fewer
agents).

Case 1. l = 1 and I = {i, j1}.
Recall that agents i and j1’s preferences are the reduced maximal conflict preferences

used in the construction of π, i.e., R is the restriction of the maximal conflict preference

profile used in the construction of π to agents I and houses H, i.e., R =
(
Rh
)H
I

. Hence, by
Lemma 2, φi(I,H,R) = h; a contradiction.

Case 2. l > 1 and I = {i, j1, . . . , jl}.
Let R′j2 equal the restricted maximal conflict preferences used in the construction of πh(j1),

i.e., R′j2 =
(
R
h(j1)
j2

)H
and define R1 = (R′j2 , R−j2). By strategy-proofness, φj2(I,H,R

1) =

h(j1). This implies that φj1(I,H,R
1) = h (if not, then by individual-rationality agent j1’s

allotment would be his second best house h(j1), which is already allocated to agent j2).
Pareto-optimality now implies φ(I,H,R1) = φ(I,H,R).

Let R′j3 equal the restricted maximal conflict preferences used in the construction of πh(j2),

i.e., R′j3 =
(
R
h(j2)
j3

)H
and define R2 = (R′j3 , R

1
−j3). By strategy-proofness, φj3(I,H,R

1) =

h(j2). This implies that φj2(I,H,R
1) = h(j1) (if not, then by individual-rationality agent

j2’s allotment would be his second best house h(j2), which is already allocated to agent j3)
and φj1(I,H,R

1) = h (if not, then by individual-rationality agent j1’s allotment would be
his second best house h(j1), which is already allocated to agent j2). Pareto-optimality now
implies φ(I,H,R2) = φ(I,H,R1) = φ(I,H,R).

We continue to replace the preferences of agents j4, . . . , jl with restricted maximal conflict
preferences until we reach a restricted maximal conflict preference profile R′ := R|I|−2 with

R′i =
(
Rh
i

)H
, R′j1 =

(
Rh
j1

)H
, R′j2 =

(
R
h(j1)
j2

)H
, . . . , R′jl =

(
R
h(jl−1)
jl

)H
, and φ(I,H,R′) =

φ(I,H,R).

Next, consider R̂i that is obtained from R′i by moving h(j1) between the best house h

and the second best house h(i), i.e., R̂i : h P̂i h(j1) P̂i h(i) R̂i h0 P̂i . . .. By strategy-proofness,

φi(I,H, (R̂i, R
′
−i)) 6= h and by individual-rationality, φi(I,H, (R̂i, R

′
−i)) ∈ {h(j1), h(i)}.

If φi(I,H, (R̂i, R
′
−i)) = h(j1), then by individual-rationality and Pareto-optimality,

φj1(I,H, (R̂i, R
′
−i)) = h, φj2(I,H, (R̂i, R

′
−i)) = h(j2), φj3(I,H, (R̂i, R

′
−i)) = h(j3), . . . ,

φjl(I,H, (R̂i, R
′
−i)) = h(jl). Now, consider the reduced problem where agents j2, . . . , jl
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leave with their allotments that are the houses they occupy, i.e., Î = {i, j1} and Ĥ =

H \ {h(j2), . . . , h(jl)}. Since domain D is closed, (Î , Ĥ,
(
R̂i, R

′
j1

)Ĥ
) ∈ D. However, this is a

problem with fewer agents than problem (I,H,R) with a priority violation involving a top
priority agent; a contradiction.

Hence, φi(I,H, (R̂i, R
′
−i)) = h(i). Since agent j1 owns house h(j1), πh(j1)(j1) < πh(j1)(i)

and πh(j1)(j1) < πh(j1)(j2). If πh(j1)(j1) < πh(j1)(j2) < πh(j1)(i), then by acyclicity (Lemmata 3
and 4) πh(j1) < πh(i) or πh(j2) < πh(i); contradicting that agent i has the top priority for
house h, i.e., πh(i) < πh(j1) and πh(i) < πh(j2). Hence, πh(j1)(j1) < πh(j1)(i) < πh(j1)(j2).

Now, consider the reduced problem where agents j1 leaves with his allotment house h,

i.e., I = I \ {j1} and H = H \ {h}. Since domain D is closed, (I,H,
(
R̂i, R

′
−i

)H
I

) ∈

D. By consistency, φj2(I,H,
(
R̂i, R

′
−i

)H
I

) = h(j1). However, this is now a problem with

fewer agents than problem (I,H,R) with priority violation involving a top priority agent; a
contradiction.

B Independence of Properties in Theorem 2

For each of the examples introduced to establish independence below we indicate the property
of Theorem 2 it fails (while it satisfies all remaining properties).

Pareto-Optimality. The null rule φ0 on D assigns to each tenant his occupied house and
to each new applicant the null house. Hence, for each problem (I,H,R) ∈ D and each agent
i ∈ I, φ0

i (I,H,R) = h(i). The null rule φ0 satisfies individual-rationality, strategy-proofness,
reallocation-proofness, and consistency, but it violates Pareto-optimality.

Individual Rationality (for Tenants). Let π be a priority structure such that for any
h, h′ ∈ H, πh = πh

′
, i.e., every house has the same priority ordering or serial dictatorship

ordering. The serial dictatorship rule ϕπ on D now works as follows. For each problem
(I,H,R) ∈ D, the highest serial dictatorship priority agent in I, let’s say agent i, is assigned
his best house in H ∪ {h0}, the highest serial dictatorship priority agent in I \ {i}, let’s
say agent j, is assigned his best house in (H \ {ϕπi (I,H,R)}) ∪ {h0}, and so on. The serial
dictatorship rule ϕπ satisfies Pareto-optimality, strategy-proofness, reallocation-proofness,
and consistency, but it violates individual-rationality for tenants since the serial dictatorship
priority structure is not adapted to the ownership structure.

Strategy-Proofness. Let π be a priority structure such that for any h, h′ ∈ H, πh = πh
′
,

i.e., every house has the same priority ordering or serial dictatorship ordering. Furthermore
assume that all tenants have higher priority than all new applicants, i.e., for each house
h ∈ H, each tenant i ∈ IE, and each new applicant j ∈ IN , πh(i) < πh(j). Let π̂ denote
the priority structure obtained from π by adapting it to the ownership structure. Note that
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at π̂, again, all tenants have higher priority for all houses than all new applicants and π̂ is
acyclic.

We define rule φ̂ as follows. For each problem (I,H,R) ∈ D, we first consider the problem
consisting of existing tenants and all houses, i.e., we consider the problem (IE, H,RIE) ∈ D,
and we apply the TTC rule ϕπ̂, i.e.,

for each i ∈ IE, φ̂i(I,H,R) = ϕπ̂i (IE, H,RIE).

Since the TTC rule ϕπ̂ is used, we have Pareto-optimality, individual-rationality, strategy-
proofness, reallocation-proofness, and consistency among tenants.

Next, we apply the immediate acceptance algorithm to determine the matching for the

remaining reduced problem (I \ IE, H \ Ĥ, RH\Ĥ
I\IE ) where Ĥ = φ̂IE(I,H,R).

Immediate Acceptance Algorithm

Step 1: Each new applicant applies to his favorite house in
(
H \ Ĥ

)
∪ {h0}. Each house

in H \ Ĥ accepts the highest priority applicant and rejects all others. The null house h0

accepts all applicants.

Step r ≥ 2: Each new applicant who was rejected at Step r − 1 applies to his favorite

house in
(
H \ Ĥ

)
∪ {h0} that did not reject him yet. Each house in H \ Ĥ not assigned

in a previous step accepts the highest priority applicant and rejects all others. Each house
in H \ Ĥ that was assigned in a previous step rejects all applicants and the null house h0

accepts all applicants.

The algorithm terminates when each new applicant in I \ IE is accepted by a house in(
H \ Ĥ

)
∪{h0}. The matching where each agent is assigned the house that he was accepted

by at the end of the algorithm is called the immediate acceptance matching and denoted by

IAπ̂(I \ IE, H \ Ĥ, RH\Ĥ
I\IE ). Hence,

for each i ∈ IN , φ̂i(I,H,R) = IAπ̂(I \ IE, H \ Ĥ, RH\Ĥ
I\IE ).

Any immediate acceptance rule is Pareto-optimal, individually-rational, and consistent (see,
for instance, Kojima and Ünver, 2014). Hence, we have Pareto-optimality, individual-
rationality, and consistency among new applicants. Since the underlying priority structure
for the immediate acceptance algorithm used here is a serial dictatorship ordering, it is easy
to see that we also have reallocation-proofness among new applicants.

Given the sequentiality of rule φ̂, first using rule ϕπ̂ for tenants and then rule IAπ̂ for new
applicants, it follows that φ̂ satisfies Pareto-optimality, individual-rationality, reallocation-
proofness, and consistency. However, it is well-known that immediate acceptance rules are
not strategy-proof. Hence, rule φ̂ is not strategy-proof.

Consistency. By Proposition 1, a TTC rule based on a cyclic priority structure that
is adapted to the ownership structure satisfies individual rationality, Pareto-optimality,
strategy-proofness, and reallocation-proofness. By Theorem 1 it violates consistency.
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Reallocation-Proofness. We consider the case where the set of potential agents is I =
{i, j, k} and the set of potential houses is H = {h, h(j)} where h is vacant and h(j) is agent
j’s house. Let π be a priority structure defined by

πh(i) < πh(j) < πh(k)

πh(j)(j) < πh(j)(k) < πh(j)(i).

Let π̃ be a priority structure with π̃h(j) = πh(j) but

π̃h(j) < π̃h(i) < π̃h(k).

Consider the rule that assigns for each problem (I,H,R),

φ̃(I,H,R) =

{
ϕπ̃(I,H,R), if k ∈ I, h(j) ∈ H, and h(j) Pk h0

ϕπ(I,H,R), otherwise,

that is, if agent k and house h(j) are present and agent k finds house h(j) acceptable,
we use the TTC rule based on π̃ and otherwise we use the TTC rule based on π. Note
that the two rules ϕπ and ϕπ̃ are Pareto-optimal, individually-rational, and strategy-proof.
This immediately implies that φ̃ is Pareto-optimal, individually-rational and can only be
manipulated by agent k. We show that φ̃ is strategy-proof and consistent.

In order to show that also agent k can never improve by changing his preferences, it is
sufficient to check the case where I = {i, j, k} and H = {h, h(j)} since for all other problems

with k ∈ I, we have φ̃ = ϕπ and ϕπ is strategy-proof.
In the following we always have I = {i, j, k} and H = {h, h(j)} and consider a preference

profile R = (Ri, Rj, Rk) and an alternative preference relation R′k for agent k. We have three

cases: either φ̃k(Ri, Rj, R
′
k) = h0 or φ̃k(Ri, Rj, R

′
k) = h or φ̃j(Ri, Rj, R

′
k) = h(j). In the first

case (φ̃k(Ri, Rj, R
′
k) = h0), by individual-rationality, we have

φ̃k(R)Rk h0 = φ̃k(Ri, Rj, R
′
k).

The second case (φ̃k(Ri, Rj, R
′
k) = h) can only happen if both i and j find h unacceptable

under Ri and Rj since agent k is the lowest priority agent under both πh and π̃h. Hence, by
Pareto-optimality,

φ̃k(R)Rk h = φ̃k(Ri, Rj, R
′
k).

In the third case (φ̃j(Ri, Rj, R
′
k) = h(j)), by strategy-proofness of the two rules ϕπ and ϕπ̃,

we only have to check the case where (i) h0 Pk h(j) but h(j) P ′k h0 and the case where (ii)
h(j) Pk h0 but h0 P

′
k h(j). In Case (i),

φ̃k(R)Rk h0 Pk h(j) = φ̃k(Ri, Rj, R
′
k).

In Case (ii),

h0 P
′
k h(j) = φ̃k(Ri, Rj, R

′
k),
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contradicting individual-rationality.

Next we show that rule φ̃ is consistent. For problems with |I| ≤ 2 or |H| = 1 it is

straightforward to see that rule φ̃ is consistent. Hence, let I = {i, j, k} and H = {h, h(j)}.
For preference profiles R with h(j) Pj h it is straightforward to see that rule φ̃ is consistent
(since agent j will receive h(j) and agent i has a higher priority than agent k in both priority
orderings πh and π̃h). Thus, consider R with h Pj h(j). We have two cases depending on
whether h0 Pk h(j) or h(j) Pk h0.

Case 1. Since h0 Pk h(j), φ̃ = ϕπ and

φ̃i(I,H,R) = h, φ̃j(I,H,R) = h(j), φ̃k(I,H,R) = h0.

Case 2. Since h(j) Pk h0, φ̃ = ϕπ̃ and

φ̃i(I,H,R) = h0, φ̃j(I,H,R) = h, φ̃k(I,H,R) = h(j).

In Case 1, the following reduced problems and their allocations establish consistency
when one of the agents leaves with his allotment.

φ̃j({j, k}, {h(j)}, (Rj, Rk)) = h(j), φ̃k({j, k}, {h(j)}, (Rj, Rk)) = h0

φ̃i({i, k}, {h}, (Ri, Rk)) = h, φ̃k({i, k}, {h}, (Ri, Rk)) = h0

φ̃i({i, j}, {h, h(j)}, (Ri, Rj)) = h, φ̃j({i, j}, {h, h(j)}, (Ri, Rj)) = h(j).

Again, consistency easily follows for further reductions from the above two agent problems.

In Case 2, the only reduced problems when one of the agents leaves with his allotment
are ({j, k}, {h, h(j)}, (Rj, Rk)) and ({i, k}, {h(j)}, (Ri, Rk)) and their allocations establish
consistency as follows.

φ̃j({j, k}, {h, h(j)}, (Rj, Rk)) = h, φ̃k({j, k}, {h, h(j)}, (Rj, Rk)) = h(j)

φ̃i({i, k}, {h(j)}, (Ri, Rk)) = h0, φ̃k({i, k}, {h(j)}, (Ri, Rk)) = h(j).

Again, consistency easily follows for further reductions from the above two agent problems.

Finally, we show that the rule φ̃ is not reallocation-proof. We consider the problem
(I,H,R) with I = {i, j, k}, H = {h, h(j)} and the following preferences:

• Ri : h Pi h0 Pi . . . ,

• Rj : h(j) Pj . . . ,

• Rk : h Pk h0 Pk . . . ,

• R̃j : h Pj h(j) Pj . . . ,

• R̃k : h(j) Pk h0 Pk . . . .
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Let R = (Ri, Rj, Rk) and R̃ = (Ri, R̃j, R̃k). Then,

φ̃i(I,H,R) = h, φ̃j(I,H,R) = h(j), φ̃k(I,H,R) = h0

φ̃i(I,H, R̃) = h0, φ̃j(I,H, R̃) = h, φ̃k(I,H, R̃) = h(j).

We now show that agents j and k by changing their preferences from (Rj, Rk) at R to

(R̃j, R̃k) at R̃ cause a violation of reallocation-proofness.

Consider agent j changing his preferences at R from Rj to R̃i. For the resulting preference

profile R1 = (Ri, R̃j, Rk) we have φ̃j(I,H,R
1) = φ̃j(I,H,R) = h(j). Hence, agent j does

not change his allotment by unilaterally moving from R to R1.
Consider agent k changing his preferences atR fromRk to R̃k. For the resulting preference

profile R2 = (Ri, Rj, R̃k) we have φ̃k(I,H,R
2) = φ̃k(I,H,R) = h0. Hence, agent k does not

change his allotment by unilaterally moving from R to R2.
Finally, consider both agents j and k changing their preferences at the same time, moving

from R to R̃, and then swapping their allotments. Then, agent j receives the same allotment
φk(I,H, R̃) = h(j) = φj(I,H,R) while agent k is better off receiving φj(I,H, R̃) = hPk h0 =
φk(I,H,R); a contradiction to reallocation-proofness.

C Literature Review

C.1 Related Literature: Housing Markets

Shapley and Scarf (1974) introduced housing markets and showed that the (weak) core
of a housing market19 is nonempty. They also defined Gale’s Top Trading Cycles (TTC)
algorithm (attributed to David Gale). Roth and Postlewaite (1977, Theorem 2’) showed
that the core of a housing market is unique and it is the outcome of the TTC algorithm.3

Hence, the core is a rule that selects a matching for each housing market. Roth (1982) showed
that the core is strategy-proof, and Bird (1984) showed that it is also group strategy-proof.

Ma (1994, Theorem 1) showed that the core of a housing market is characterized
by Pareto-optimality, individual-rationality (for tenants), and strategy-proofness; see also
Sönmez (1999, Corollary 3) and Svensson (1999, Theorem 2). Sönmez (1996, Theorems 1 and
2) showed that the core is the unique rule satisfying Pareto-optimality, individual-rationality
(for tenants), and Maskin-monotonicity.20

Takamiya (2001, Theorem 3.1) showed that for housing markets a rule is Maskin mono-
tonic if and only if it is group strategy-proof ; furthermore, if a rule is group strategy-proof
and onto21 then it is Pareto-optimal (Takamiya, 2001, Lemma 3.5). These results combined

19A matching for a housing market is in the weak core (or weakly core stable) if no subset of agents can
strictly benefit by reallocating their occupied houses among themselves.

20A rule is Maskin-monotonic if each matching that is selected by the rule and that is (weakly) improved
in the preferences of all agents (via a so-called Maskin-monotonic transformation) is still selected by the rule.

21A rule is onto if for each matching there exist preferences of agents at which the matching is selected
by the rule.
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with Ma’s (1994, Theorem 1) characterization imply that a rule is the core if and only if it
is individually-rational (for tenants), Maskin monotonic, and onto (Takamiya, 2001, Corol-
lary 3.8). Takamiya (2001, Theorem 4.12) also showed that a rule is Maskin monotonic if
and only if it is strategy-proof and non-bossy, and obtained another characterization of the
core by individual-rationality (for tenants), strategy-proofness, ontoness, and non-bossiness
(Takamiya, 2001, Corollary 4.16).

Ehlers (2014) studied housing markets (when agents have weak preferences over houses).
He showed that when agents have strict preferences over houses a rule satisfies weak Pareto-
optimality,22 individual-rationality, strategy-proofness, and consistency if and only if it is
the TTC rule (Ehlers, 2014, Lemma 1). On the weak preference domain, the TTC rule
with fixed tie-breaking is characterized by weak Pareto-optimality, individual-rationality,
strategy-proofness, non-bossiness, and consistency (Ehlers, 2014, Theorem 1).

C.2 Related Literature: House Allocation Problems

For house allocation problems, the serial dictatorship rule works as follows: given an ordering
of agents, the first agent in the ordering is assigned his most preferred house, the second
agent in the ordering is assigned his most preferred house among the remaining houses,
and so on. Svensson (1994, Theorem 1) showed that the serial dictatorship rule is Pareto-
optimal and strategy-proof, moreover the set of all Pareto-optimal matchings are obtained by
applying the serial dictatorship rule at every ordering of agents (Svensson, 1994, Theorem 2).
Svensson (1999, Theorem 1) showed that a rule satisfies strategy-proofness, non-bossiness,
and neutrality23 if and only if it is the serial dictatorship rule.

Ergin (2000, Proposition 1) showed that the Pareto correspondence that selects all Pareto-
optimal matchings for a house allocation problem is consistent,7 and a rule for house allo-
cation problems satisfies Pareto-optimality, neutrality, and consistency if and only if it is a
serial dictatorship rule (Ergin, 2000, Theorem 1 and Corollary 1).

Pápai (2000) introduced hierarchical exchange rules for house allocation problems. Hi-
erarchical exchange rules assign houses to agents in a similar way the TTC algorithm does
(for housing markets) by specifying ownership rights for the houses in an iterative hierarchial
manner. Each house is an initial endowment of an agent and an agent may be endowed with
multiple houses. At the first step of the TTC algorithm each agent points to the agent who
is endowed with his favorite object. Agents at the top trading cycles are assigned to their
favorite houses and removed from the problem with their assignments. Houses that were
not assigned to anyone at the first step of the algorithm and were endowments of removed
agents are inherited as new endowments by the agents who are still in the problem. Hence
each remaining house is an endowment of some remaining agent at the second step of the
TTC algorithm. The TTC algorithm can continue and agents in the top trading cycles are

22A rule is weakly Pareto-optimal if the matching chosen by the rule is such that there is no other matching
at which all agents are strictly better off.

23A rule for house allocation problems is neutral if the matching selected by the rule is independent of
the names of the houses.
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assigned their favorite houses among the remaining ones and removed from the problem with
their assigned houses at every step of the algorithm. Houses that are still in the problem
and were endowments of removed agents are inherited by agents who are not removed from
the problem at every step of the algorithm. Hence a hierarchical exchange rule is determined
by the initial endowments and the hierarchical endowment inheritance at later steps. While
the initial endowments are given a priori, the hierarchical endowment inheritance may be
endogenous; in particular, the inheritance of endowments may depend on the allotments in
earlier steps (for details on the exact “rules” of endowment inheritance we refer to Pápai,
2000, Section 5.1). Pápai (2000) showed that a rule for house allocation problems satisfies
Pareto-optimality, group strategy-proofness, and reallocation-proofness if and only if it is a
hierarchical exchange rule. A subclass of the hierarchical exchange rules are the so-called en-
dowment inheritance rules (called “fixed endowment hierarchical exchange rules” by Pápai,
2000) that are defined by an endowment inheritance table that shows the initial endowments
of agents and the order of inheritance of each house. That is, an endowment inheritance
table is a permutation of the agents for each house. Notice that a serial dictatorship rule
is an endowment inheritance rule defined by the endowment inheritance table that uses the
same permutations of agents for each house (then, at every step of the TTC algorithm, one
agent will be endowed with all houses).

Ehlers and Klaus (2007, Theorem 1 and Corollary 1) showed that if a rule for house
allocation problems with at least four agents satisfies Pareto-optimality, strategy-proofness,
and consistency then it is a so-called efficient generalized priority rule, i.e., it adapts to a
priority structure that satisfies Ergin’s acyclicity condition (Ergin, 2002), except -maybe-
for up to three agents in each house’s priority ordering. Ehlers and Klaus (2006) studied
house allocation problems for endogenously given priority structures. A rule is an efficient
priority rule if it adapts to an Ergin acyclic priority structure and the assignment of houses to
agents are determined by the agents-proposing deferred acceptance rule. They showed that
rules for house allocation problems satisfy Pareto-optimality, group strategy-proofness, and
reallocation-consistency10 if and only if they are efficient priority rules (Ehlers and Klaus,
2006, Proposition 2 and Theorem 1).

Ehlers et al. (2002) studied house allocation problems when the population changes.
They characterized rules that satisfy Pareto-optimality, strategy-proofness, and population-
monotonicity24 (Ehlers et al., 2002, Theorem 1). The characterized rules are restricted
endowment inheritance rules that assign houses to agents by an iterative procedure such
that at each step no more than two agents trade houses from their hierarchically specified
endowments. Ehlers and Klaus (2004) (see also Ehlers and Klaus, 2011 and Kesten, 2009)
studied house allocation problems when houses (resources) change. They characterized rules
that satisfy Pareto-optimality, independence of irrelevant objects,25 and resource monotonic-

24A rule for house allocation problems is population-monotonic when some agents are added to the set of
incumbent agents then all incumbent agents are either (weakly) worse off or (weakly) better off.

25A rule satisfies independence of irrelevant objects if the matching chosen by the rule depends only on
preferences over the set of available houses, i.e., when two preferences over a given set of houses coincide
then the rule chooses the same matching at these preferences. The condition is vacuously satisfied in our
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ity26 when the null house is always the worst house for each agent (Ehlers and Klaus, 2004,
Theorem 1). The characterized rules are the mixed dictator-pairwise exchange rules that
assign houses to agents sequentially such that at each step there is either a dictator or two
agents trade objects from their hierarchically specified endowments. Efficient priority rules
characterized by Ehlers and Klaus (2006), restricted endowment inheritance rules charac-
terized by Ehlers et al. (2002), and mixed dictator-pairwise exchange rules characterized by
Ehlers and Klaus (2004) are the same rules. That is, they are endowment inheritance rules
(Pápai, 2000) defined by the endowment inheritance tables such that at each step of the
TTC algorithm all remaining houses are endowed either by an agent (the dictator) or by two
agents.

C.3 Related Literature: Acyclic Priority Structures

Ergin (2002) and Kesten (2006) studied a more general house allocation with quotas model :
There is a finite set of houses that each come with a quota that describes the number of
available copies to be allocated to a finite set of agents. Each agent has strict preferences
over houses and each house has a fixed priority ordering over agents. We refer to such a
problem as house allocation with quotas problem but a well-known application is that of
a school choice problem where each house with a quota is a school with seats, each agent
is a student who wants to be enrolled in a school, and the priority ordering of a school is
determined by law or other criteria by the schools or school districts (two surveys on school
choice can be found in Abdulkadiroğlu, 2013; Pathak, 2011). The only difference between
house allocation problems and house allocation with quotas problems is that the quota of
every house is exactly one in the former and it is at least one in the latter.

Ergin (2002) defined an acyclicity condition on priority structures for house allocation
with quotas problems that we refer to as Ergin acyclicity. Let (I,H,R) be a problem,
qH = (qh)h∈H denote the quotas of houses in H, and πHI denote a priority structure for
houses in H over agents in I. For each house h ∈ H and each agent i ∈ I, let Uh(i) = {j ∈
I | πh(j) < πh(i)} denote the set of agents who have higher priority than agent i for house
h. A priority structure (πHI ) has an Ergin cycle if the following conditions are satisfied:

• (Ergin’s Cycle Condition). There are agents i, j, k ∈ I and houses h, h′ ∈ H such that
πh(i) < πh(j) < πh(k) and πh

′
(k) < πh

′
(i).

• (Ergin’s Scarcity Condition). There are (possibly empty) disjoint sets for houses h
and h′, Ih, Ih′ ⊆ I \ {i, j, k} such that Ih ⊆ Uh(j), Ih′ ⊆ Uh′(i), |Ih| = qh − 1, and
|Ih′| = qh′ − 1.

A priority structure is Ergin acyclic if it has no Ergin cycles. Note that Ergin acyclicity
imposes conditions both on the priority structure and the quotas of houses. If the quota

formulation of the problem.
26A rule is resource-monotonic if the following holds: if more resources become available, i.e., a set of new

houses is added to existing houses, then all agents either (weakly) gain or (weakly) loose.
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of each house is one, then Ergin’s scarcity condition is automatically satisfied and Ergin
acyclicity only restricts the priority structure through Ergin’s cycle condition.

Ergin (2002) showed that the agents-proposing deferred acceptance rule (Gale and Shap-
ley, 1962) based on a priority structure π, denoted by DAπ, is a so-called “best rule,” i.e.,
it Pareto-dominates any other rule that adapts to the same priority structure (Ergin, 2002,
Proposition 1). He also showed that the following are equivalent: DAπ is Pareto-optimal,
DAπ is group strategy-proof, DAπ is consistent, and π is Ergin acyclic (Ergin, 2002, Theo-
rem 1).

Kesten (2006) defined an acyclicity condition on priority structures for house allocation
with quotas problems that we refer to as Kesten acyclicity. Let (I,H,R) be a problem,
qH = (qh)h∈H denote the quotas of houses in H, and πHI denote a priority structure for
houses in H over agents in I. A priority structure (πHI ) has a Kesten cycle if the following
conditions are satisfied:

• (Kesten’s Cycle Condition). There are agents i, j, k ∈ I and houses h, h′ ∈ H such
that πh(i) < πh(j) < πh(k), πh

′
(k) < πh

′
(i), and πh

′
(k) < πh

′
(j).

• (Kesten’s Scarcity Condition). There is a (possibly empty) set for house h, Ih ⊆
I \ {i, j, k} such that Ih ⊆ Uh(i) ∪

(
Uh(j) \ Uh′(k)

)
and |Ih| = qh − 1.

A priority structure is Kesten acyclic if it has no Kesten cycles.

Similar to Ergin’s acyclicity condition, Kesten acyclicity imposes conditions both on the
priority structure and the quotas of houses. If the quota of each house is one, then Kesten’s
scarcity condition is automatically satisfied, and Kesten acyclicity only restricts the priority
structure through Kesten’s cycle condition. Note that for house allocation with quotas
problems, Kesten acyclicity is stronger than Ergin acyclicity (Kesten, 2006, Lemma 1), i.e.,
if a priority structure has an Ergin cycle then it also has a Kesten cycle.

Kesten (2006) showed that for the TTC rule based on a priority structure π,27 denoted by
ϕπ, the following are equivalent: ϕπ = DAπ, ϕπ is resource-monotonic,26 ϕπ is population-
monotonic,24 and π is Kesten acyclic (Kesten, 2006, Theorem 1).

Kesten (2006) defined another acyclicity condition on priority structures for house al-
location with quotas problems that we refer to as strong Kesten acyclicity. Let (I,H,R)
be a problem, qH = (qh)h∈H denote the quotas of houses in H, and πHI denote a priority
structure for houses in H over agents in I. A priority structure (πHI ) has a weak Kesten cycle
if Kesten’s cycle condition applies and the following condition is satisfied:

• (Kesten’s Weak Scarcity Condition). There is a (possibly empty) set for house h,
Ih ⊆ I \ {i, j, k} such that Ih ⊆ Uh(k) and |Ih| = qh − 1.

27In the TTC algorithm, each agent is assigned the house he points to in a trading cycle and the quota
of each house in a trading cycle is reduced by one. Furthermore, if the quota of a house becomes zero at the
end of some step of the TTC algorithm, then the house is removed.
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A priority structure is strongly Kesten acyclic if it has no weak Kesten cycles.

If a priority structure satisfies strong Kesten acyclicity, then it also satisfies Kesten
acyclicity. If the quota of each house is one, then Kesten’s weak scarcity condition is auto-
matically satisfied, and both of Kesten’s acyclicity conditions coincide.

Kesten (2006) showed that the TTC rule based on priority structure π, ϕπ, is consistent
if and only if π is strongly Kesten acyclic (Kesten, 2006, Theorem 2).

For completeness, we show that for house allocation problems with only new applicants,
Ergin and Kesten acyclicity coincide.

Lemma 6 (Ergin = Kesten Acyclicity for House Allocation Problems). For house
allocation problems with only new applicants, a priority structure is Ergin acyclic if and only
if it is (strongly) Kesten acyclic.

Proof. For house allocation problems, Ergin’s as well as Kesten’s scarcity conditions of
acyclicity are satisfied automatically. Furthermore, it is easy to see that when Kesten’s cycle
condition is satisfied, then Ergin’s cycle condition is satisfied as well, i.e., a Kesten cycle is
also an Ergin cycle.

We now show that any Ergin cycle implies the existence of a Kesten cycle. Assume that
Ergin’s cycle condition is satisfied, i.e., there are agents i, j, k ∈ I and houses h, h′ ∈ H
such that πh(i) < πh(j) < πh(k) and πh

′
(k) < πh

′
(i). If πh

′
(k) < πh

′
(j), then Kesten’s

cycle condition is satisfied and we are done. Hence, assume that πh
′
(k) > πh

′
(j). Then,

πh
′
(j) < πh

′
(k) < πh

′
(i), πh(i) < πh(j), and πh(i) < πh(k); hence, Kesten’s cycle condition

is satisfied.
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