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(Il)legal Assignments in School Choice∗

Lars Ehlers†and Thayer Morrill‡

Abstract

In public school choice, students with strict preferences are assigned to schools.
Schools are endowed with priorities over students. Incorporating different constraints
from applications, priorities are often modeled as choice functions over sets of stu-
dents. It has been argued that the most desirable criterion for an assignment is
fairness; there should not be a student having justified envy in the following way: he
prefers some school to his assigned school and has higher priority than some student
who got into that school. Justified envy could cause court cases. We propose the
following fairness notion for a set of assignments: a set of assignments is legal if and
only if any assignment outside the set has justified envy with some assignment in the
set and no two assignments inside the set block each other via justified envy. We
show that under very basic conditions on priorities, there always exists a unique legal
set of assignments, and that this set has a structure common to the set of fair assign-
ments: (i) it is a lattice and (ii) it satisfies the rural-hospitals theorem. This is the
first contribution providing a “set-wise” solution for many-to-one matching problems
where priorities are not necessarily responsive and schools are not active agents.
JEL C78, D61, D78, I20.

1 Introduction

Centralized admissions procedures are now being used in a wide range of applications rang-
ing from national college admissions, assigning students to public schools, to implementing
auxiliary programs such as magnet schools.1 There has been a great deal of research focused

∗We are grateful to Federico Echenique for his comments and suggestions. The first author acknowledges
financial support from the SSHRC (Canada) and the FRQSC (Québec).
†Département de Sciences Économiques and CIREQ, Université de Montréal, Montréal, QC H3C 3J7,

Canada. Email: lars.ehlers@umontreal.ca (Corresponding author).
‡North Carolina State University, NC, USA. Email: thayer.morrill@ncsu.edu.
1Examples of countries that use a centralized college admissions process are Turkey (Balinski and

Sönmez, 1999); China (Chen and Kesten,2016); and India (Aygün and Turhan, 2016). There is now a long
literature devoted to public school assignment beginning with the seminal work of Abdulkadiroğlu and
Sönmez (2003). See Pathak (2011) and Abdulkadiroğlu and Sönmez (2013) for surveys of the literature.
See Dur, Hammond, and Morrill (2017) for a discussion of centralized magnet school assignment.
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on the tradeoffs between efficiency, fairness, and strategic properties of candidate mecha-
nisms. These mechanisms have received a great deal of attention in the economics literature
precisely because for parents and students school choice is an important issue. Assigning
objects which are valuable and yet scarce leads to contention, and contention leads to law-
suits. For example, parent groups in Seattle and Louisville filed lawsuits contesting the
use of racial status in the tiebreaker of their school district’s assignment procedure. These
law suites eventually led to the Supreme Court ruling (in Parents Involved in Community
Schools v. Seattle School District No. 1, 551 U.S. 701, 2007) that race cannot be used
explicitly in a school assignment procedure.

This is the basic question of our paper: which school assignments are legal? We are
concerned with a parent or group of parents who file a lawsuit with the intent of changing
the school assignment that is to be made.2 Consider what seems to be the most straight-
forward application: college admissions. Typically, all students take a common exam, and
a student’s score determines her priority when choosing a university. In this environment,
legality may appear simple; if a student is denied admissions to a university, each stu-
dent accepted to that university must have a higher score than her. However, there are
two reasons why (at least in the United States) this does not correctly determine which
assignments are legal.

Legal standing, or locus standi, is the capacity to bring suit in court. As interpreted
by the United States Supreme Court:

Under modern standing law, a private plaintiff seeking to bring suit in federal
court must demonstrate that he has suffered “injury in fact,” that the injury is
“fairly traceable” to the actions of the defendant, and that injury will “likely be
redressed by a favorable decision.” 3

Therefore, it is not illegal to reject a student from a university (regardless of which students
are accepted) unless there exists a legal way of assigning her to the university. This suggests
that legality is a set-wise property of assignments. A set of assignments is legal or not as
we must be able to determine which assignments are possible in order to know which
assignments are legal.

The second reason why a simple comparison of students’ scores is not sufficient to de-
termine the legality of an assignment is that typically a school’s decision on which students
to admit is at least partially based on the composition of the student body. Public schools
often reserve seats for minority students or students who live within a “walk-zone”.4 Ad-
mission to a magnet school may consider a student’s income level (Dur, Hammond and
Morrill, 2017). The centralized admissions process in India incorporates which caste the

2In particular, we do not address the separate question of a parent filing a lawsuit with the purpose of
receiving monetary damages. Note that a government agency typically has sovereign immunity and would
not be liable for damages.

3This quote is from Hessick (2007) regarding Supreme Court case Lujan vs. Defenders of Wildlife, 504
U.S. 555, 560-61 (1992).

4For examples, see Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu et al. (2005), Kominers and
Sönmez (2016), and Dur et al. (2017).

2



student is a member of in their admissions process (Aygün and Turhan, 2016). In each
case, admission decisions are based on a more complicated choice function than a simple
rank-order list of students. Is it still possible to determine which assignments are legal in
a coherent way?

A generalized choice function is just a more complicated set of rules for determining
which students are admitted. We interpret these rules as conveying rights to each student.
A student’s rights have been violated if the rules dictate that she should have been chosen.
However, whether or not this violation is illegal is more subtle; although the student has
been harmed, this violation is not illegal unless the harm is redressable.5 We propose
a definition of legality that incorporates these two constraints. This is analogous to a
“stability” notion of a set of assignments (where stability depends on the whole set). More
specifically, blocking is only allowed via assignments in the set (which we deem legal). Any
assignment outside the set is illegal because it is blocked by some assignment in the set.
The important feature is that here blocking is defined in terms of assignments: student i
blocks an assignment if i blocks it with some school and there exists some assignment in
the set where i is assigned to the blocking school. It should be clear that in this assignment
the school is not necessarily better off. It has the interpretation that there is some “legal
way” of assigning i to the blocking school. More precisely, we call a set of assignments legal
iff (i) any assignment not in the set is blocked by some student with an assignment in the
set and (ii) no two assignments block each other.

Of course, this is related to stable sets à la von Neumann Morgenstern (vNM). A cursory
reading makes one think that the two concepts are identical. They are in the sense of the
formulation of (i) and (ii), but most importantly, a school might be worse off under the
assignment in the set when compared to the original one. But this is not a problem as we
are here in the context of public school choice where (as it has been argued) students are
“active agents” and schools are “objects to be consumed”. Any legal set is a vNM-stable
set where schools are “objects to be consumed”.

Our main results show that there always exists a unique legal set of assignments and that
this set shares the following properties with stable assignments: (i) it is a lattice and (ii)
the rural hospitals theorem is satisfied. Therefore, there always exists a student-optimal
legal assignment and a school-optimal assignment. Moreover, we demonstrate that the
student-optimal legal assignment is Pareto efficient. Therefore, unlike fairness, there is no
tension between making a legal assignment and an efficient assignment. Finally, we relate
the student-optimal legal assignment to Kesten’s efficiency adjusted deferred-acceptance
(DA)-mechanism (Kesten, 2010). The efficiency adjusted DA-mechanism has not been
previously defined when schools have general choice functions. We show that when schools
have acceptant6 choice functions that the mechanism is straightforward to generalize and
that the efficiency adjusted DA-mechanism chooses the student-optimal legal assignment.

5It is common, especially among economists, to view all harm as redressable via side payments. However,
states and by extension local governments have sovereign immunity from lawsuits for damages unless the
state consents to be sued.

6A school a’s choice function is acceptant if there exists a capacity q such that a accepts all students if
fewer than q apply and q students whenever q or more students apply.
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As a byproduct, we offer a foundation for the generalization of Kesten’s efficiency adjusted
DA-mechanism to school choice environments where priorities are given by substitutable
and LAD choice functions.

Our paper is most closely related to Morrill (2017) which reinterprets which school
assignments are fair. Typically, an assignment is deemed unfair if a student has justified
envy.7. Morrill (2017) defines a student to have legitimate envy if she has justified envy
at school a and it is possible to assign her to school a. Otherwise, her envy is defined
to be petty. There is not a direct relationship between which schools are possible and
which schools are legal since a legal assignment is allowed to be wasteful whereas in Morrill
(2017) non-wasteful assignments are excluded by assumption; however, there is a close
relationship between which assignments are possible and which assignments are legal. The
analysis in Morrill (2017) relies critically on two assumptions: each school has responsive
preferences and the school assignments considered are non-wasteful. However, in many
practical applications (such as when incorporating affirmative action) these assumptions
are unreasonable. Our paper demonstrates that the legal set of assignments has similar
properties even when these restrictions do not hold.

Our paper also relates to several recent papers that consider alternative fairness notions
to eliminating justified envy. Dur, Gitmez, and Yilmaz (2015) introduce the concept of
partial fairness. Intuitively, they define an assignment to be partially fair if the only
priorities that are violated are “acceptable violations”. Kloosterman and Troyan (2016)
also introduce a new fairness concept called essentially stable. Intuitively, an assignment
is essentially stable if resolving i’s justified envy of school a initiates a vacancy chain that
ultimately leads to i being rejected from a. Both Dur, Gitmez and Yilmaz (2016) and
Kloosterman and Troyan (2016) provide characterizations of EADA using their respective
fairness notion. Partial fairness and essentially stable are similar in spirit but do not
directly relate to legality. Each is a pointwise concept while legality is a setwise concept.
Moreover, the analysis in both Dur, Gitmez and Yilmaz (2015) and Kloosterman and
Troyan (2016) relies heavily on the assumption that schools have responsive preferences. It
is not clear whether or not their results would hold in the general environment considered
in the current paper.8

In school choice with responsive priorities, Wu and Roth (2016) study the structure
of assignments which are fair and individually rational (i.e. non-wastefulness may be
violated). They show that this set has a lattice structure and that the student-optimal
assignment coincides with the student-optimal stable assignment.

In contexts where both sides are agents, in one-to-one matching problems Ehlers (2007)
studies vNM-stable sets, and Wako (2010) shows the existence and uniqueness of such sets.
Klijn and Masso (2003) study bargaining sets in those problem. Note that all these papers
consider one-to-one settings whereas our paper considers the most general many-to-one

7Student i has justified envy of student j if i prefers j’s assignment to her own and i has a higher
priority at that school than does j.

8Kesten (2004), Alcalde and Romero (2015), and Cantala and Papai (2014) also introduce alternative
notions of fairness for the school assignment problem. The concepts they introduce do not directly relate
to legality.
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setting and provides an alternative solution concept to the set of stable assignments.
We proceed as follows. Section 2 introduces school choice and all basic notions for choice

functions and assignments. Section 3 defines legal assignments. Section 3.1 generalizes the
Pointing Lemma, the Decomposition Lemma and the Rural Hospital Theorem to any two
individually rational assignments which do not block each other, and Section 3.2 establishes
a Lattice Theorem. We then use these results to show the existence and uniqueness of
a legal set in Section 3.3. Section 4 discusses our results. In Subsection 4.1 we relate
legal assignments to efficiency and non-wastefulness. Section 4.2 shows that there is a
unique strategy-proof and legal mechanism, namely, the student-proposing DA-mechanism.
Section 4.3 shows how our results carry over to the setting of assignment with contracts.
The Appendix contains all proofs omitted from the main text.

2 Model

We consider the following many-to-one matching problem. There is a finite set of students,
A = {i, j, k, . . .}, to be assigned to a finite set of schools, O = {a, b, c, . . .}. Each student i
has a strict preference Pi over the schools and being unassigned O∪{i} (where i stands for
being unassigned). Then iPia indicates that student i prefers being unassigned to being
assigned to school a and Ri denotes the weak preference relation associated with Pi.

We allow schools having general choice functions for priorities in order to incorporate
various assignment constraints. Let 2A denote the set of all subsets of A. Each school a
has a choice function Ca : 2A → 2A such that for all X ∈ 2A, Ca(X) ⊆ X. Then Ca(X)
denotes the set of students that school a chooses from X. Throughout we assume that
Ca satisfies the following standard properties of substitutability and the law of aggregate
demand (LAD): (a) substitutability rules out complementarities in the sense that students
chosen from larger sets should remain chosen from smaller sets and (b) LAD requires the
number of chosen students to be weakly monotonic for bigger sets of students.

Definition 1. Let a ∈ A and Ca : 2A → 2A be a choice function.

(a) The choice function Ca is substitutable if for all X ⊆ Y ⊆ A we have Ca(Y )∩X ⊆
Ca(X).9

(b) The choice function Ca satisfies the law of aggregate demand (LAD) if for all
X ⊆ Y ⊆ A we have |Ca(X)| ≤ |Ca(Y )|.10

Throughout we fix the assignment problem (A,O, (Pi)i∈A, (Ca)a∈A).

9Note that this is equivalent to i ∈ Ca(Y ) and j ∈ Y \{i} implies i ∈ Ca(Y \{j}) (or the same condition
formulated in terms of rejected students Y \Ca(Y )).

10Here |X| denotes the cardinality of a set. LAD was introduced by Hatfield and Milgrom (2005) in a
more general model of matching with contracts. Our definition of LAD is equivalent to size monotonicity
introduced by Alkan and Gale (2003) and Fleiner (2003). We use the LAD terminology to be consistent
with the standard matching literature.
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An assignment is a function µ : A → O ∪ A from students to schools and students.
Given assignment µ and i ∈ A, let µi = a indicate student i being assigned to school a (and
µi = i indicate student i being unassigned). We use the convention that for each school
a the set µa = {i ∈ A : µi = a} denotes the students assigned to school a. Let A denote
the set of all assignments. An assignment µ is individually rational if for every student
i, µiRii and, for every school a, Ca(µa) = µa. Throughout we will consider individually
rational assignments only.11 Let IR denote the set of individually rational assignments.

Blocking is defined as follows for general choice functions. Given an assignment µ,
student i and school a block µ if aPiµi and i ∈ Ca(µa ∪ {i}). This means that student
i prefers school a to his assignment and school a chooses i from its assigned students
and i. There are two types of blocking: school a has an empty seat available for i or
school a would like to admit i and reject a previously admitted student. These two types
are distinguished below in the usual sense. An assignment µ is non-wasteful if (it is
individually rational and) there do not exist a student i and a school a such that aPiµi and
Ca(µa ∪{i}) = µa ∪{i}. Given an assignment µ, student i has justified envy if there is a
school a such that aPiµi, i ∈ Ca(µa ∪ {i}), and Ca(µa ∪ {i}) 6= µa ∪ {i}. This means that
student i prefers a to his assignment and has higher “choice” priority because he is chosen
from the set of students assigned to school a and including him (and some other student
is rejected). An assignment is fair if (it is individually rational and) there is no justified
envy. An assignment is stable if it is individually rational, non-wasteful and fair.

Stable assignments were introduced by Gale and Shapley (1962) in two-sided matching
and adopted to school choice by Balinski and Sönmez (1999) and Abdulkadiroğlu and
Sönmez (2002). The main difference is that in two-sided matching both sides are “agents”
whereas in school choice students are “agents” and schools are “objects to be consumed”.

Nevertheless, the set of stable assignments coincide in both interpretations: the set of
stable assignments is non-empty, it is a lattice and it satisfies the strong rural hospitals the-
orem. Furthermore, note that stability is a“point-wise”property specific to one assignment
alone.

3 Legal Assignments

We will be interested in “set-wise” blocking which will depend on the whole set of assign-
ments under consideration.

Definition 2. Let µ, ν ∈ A and i ∈ A.

(a) Student i blocks assignment µ with assignment ν if for some school a ∈ A: (1)
aPiµi, (2) i ∈ Ca(µa ∪ {i}) and (3) νi = a.

(b) Assignment µ blocks ν if there is a student i who blocks µ with ν.

11Individual rationality can be alternatively interpreted as “feasibility” of assignments.
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Note that in the usual blocking notion, both the blocking student and the school are
unambiguously (myopically) better off (with respect to the original assignment) whereas
here the student is only unambiguously better off (because the school’s priority ranking is
not clear between µ and ν). Our main solution concept only allows blocking via assignments
which are in the set under consideration: (i) any assignment outside the set is blocked via
some assignment inside the set and (ii) any two assignments inside the set do not block
each other.

Definition 3. Let L ⊆ IR. Then L is legal if and only if

(i) for all ν ∈ IR\L there exists µ ∈ L such that µ blocks ν, and

(ii) for all µ, ν ∈ L, µ does not block ν.

On first sight this is similar to stable sets à la von Neumann-Morgenstern (hereafter
vNM-stability). However, under vNM-stability, both sides (often called workers and firms
instead of students and schools) are considered to be agents, and all agents must be made
better off in order to block. However, in the school assignment problem only the students
are agents. The important fact in our definition of blocking is that only the student is made
better off and the school may be made worse off.12 One could interpret the legality of a
set of assignments as the natural generalization of stable sets to school choice. Of course,
this could be done to other contexts in cooperative game theory where sharing problems
contain “neutral” agents with priorities.

Throughout we will use the convention that for a given legal set L, any assignment
belonging to L is called legal and any assignment not belonging to L is called illegal.

Since school choice problems have a non-empty set of stable assignments (the core), the
following heuristic way of finding a set of legal assignments (as already suggested by von
Neumann-Morgenstern) is plausible.

Recall that IR denotes the set of all individually rational assignments. We call a
function f : 2IR → 2IR an operator. We define an operator f to be increasing if X ⊆ Y ⊆
IR implies f(X) ⊆ f(Y ), and analogously, f is decreasing if X ⊆ Y implies f(X) ⊇ f(Y ).

The following operator will be central for finding legal assignments. Given any set of
assignments X ⊆ IR, π(X) is the set of individually rational assignments which are not
blocked by any assignment in X:

π(X) = {µ ∈ IR | @ ν ∈ X such that ν blocks µ} . (1)

The following three properties are straightforward to verify but will be useful.

Lemma 1. The operator π defined in (1) satisfies:

(i) π is decreasing.

(ii) π2 is increasing.

12Note that legality and vNM-stability are equivalent when a school can be assigned at most one student.
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(iii) If J is the set of stable assignments, then J ⊆ π(M) for any set M ⊆ IR.

Proof. If a student is able to block with more assignments, then fewer assignments will
remain unblocked. Therefore, π is a decreasing operator. Consider two sets of assignments
X and Y such that X ⊆ Y ⊆ IR. Since π is decreasing, π(Y ) ⊆ π(X). Again, since π
is decreasing, π(π(X)) ⊆ π(π(Y )). Therefore, π2 is increasing. Finally, stable assignments
are not blocked by any assignment. Therefore, they are not blocked by any assignment in
IR.

As it turns out, any legal set of assignments is a fixed point of the operator π (and vice
versa).

Lemma 2. Let L ⊆ IR. Then L is a legal set if and only if π(L) = L.

Proof. Suppose L is legal. If µ ∈ L, then µ is not blocked by any ν ∈ L. Therefore,
L ⊆ π(L). Similarly, if µ ∈ π(L), then by construction there does not exist ν ∈ L such
that ν blocks µ. Therefore, π(L) ⊆ L. For the other direction, suppose that π(L) = L.
Then µ 6∈ L if and only if µ 6∈ π(L) (since L = π(L)) if and only if there exists a ν ∈ L
such that ν blocks µ (by the definition of π). Therefore, L is legal.

It is not obvious that a legal set of assignments must exist (we will show this later).
Suppose that a legal set of assignments does exist. We define S0 = ∅, and we set B0 =
π(S0). Note that B0 = IR, the set of all individually rational assignments. Continuing,
we let S1 = π(B0). Note that S1 is the set of stable assignments. In general, we define:

S0 = ∅
Bk = π(Sk)

Sk+1 = π(Bk) = π2(Sk)

Let L be a legal set of assignments. It is trivially true that S0 ⊆ L ⊆ B0. If µ is a
stable assignment, then µ is not blocked by any assignment. Therefore, the set of stable
assignments, S1, must be contained in L. Moreover, a legal set of assignments must be
internally consistent. Since S1 is contained in any legal set, no assignment blocked by an
assignment in S1 can be part of any legal set. Therefore, L ⊆ B1. Similarly, if L is a legal
set of assignments, and µ is not blocked by any assignment in B1, then µ is not blocked by
any assignment in L. Therefore, by external stability, µ must be legal. Therefore, it must
be that S2 ⊆ L, and so on.

In general, for any k, if L is a legal set of assignments then:

S0 ⊆ S1 ⊆ . . . ⊆ Sk ⊆ L ⊆ Bk ⊆ . . . ⊆ B1 ⊆ B0

We seek a fixed point of the operator π; however, it is not obvious that such a fixed
point exists. However, since π2 is an increasing function, a fixed point of π2 must exist. In
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particular, since there are only a finite number of possible assignments, there must be a n
such that Sn = Sn+1.13

Furthermore, for this fixed point we have Sn ⊆ π(Sn): Trivially, S0 ⊆ π(S0) = B0.
Now suppose by induction that we have Sk−1 ⊆ π(Sk−1). Because π2 is increasing, we have
π2(Sk−1) ⊆ π3(Sk−1). Thus,

Sk = π2(Sk−1) ⊆ π3(Sk−1) = π(π2(Sk−1)) = π(Sk),

which yields the desired conclusion Sk ⊆ π(Sk).
Thus, if Sn is a fixed point of π2, then the two key properties of Sn are:14

(1)Sn ⊆ π(Sn) and (2)Sn = π2(Sn).

Our main challenge will be to show that in fact Sn = Bn. This will establish the existence
and uniqueness of a legal set of assignments. However, we first establish properties of Sn

that will be used in our proof. We will show that any set with properties (1) and (2) is a
lattice and satisfies the Rural Hospitals theorem.

For this, it will be instrumental to show for any two individually rational assignments
µ and ν, which do not block each other, a Pointing Lemma, a Decomposition Lemma and
the Rural Hospitals Theorem. Then we go on to show the lattice structure for these as-
signments. Any reader, who wants to go directly to the main results, may skip Subsections
3.1 and 3.2.

3.1 Pointing, Decomposition and Rural Hospital Theorem

Two of the classic results in matching theory are the Pointing Lemma and the Decompo-
sition Lemma. The Pointing Lemma (attributed to Conway in Knuth, 1976) is the basis
for the proof that the set of stable marriages is a lattice.15 The Pointing Lemma compares
any two stable assignments µ and ν. We ask each man to point to his favorite wife under
the two marriages (he is possibly unmarried or married to the same woman), and we ask
each woman to point to her favorite husband. The Pointing Lemma says that no man and
woman point to each other; no two men point to the same woman; and no two women
point to the same man.

13This follows from Tarski’s fixed point theorem because 2IR is a partially ordered set with respect to
set inclusion and π2 is increasing. Moreover, Tarski’s theorem says that the set of fixed points of π2 is a
lattice with respect to unions and intersections of sets. However, his result does not tell us anything about
the structure of the assignments belonging to a fixed point of π2.

14This is very closely related to the concept of a subsolution defined in Roth (1976). What is now called
a vNM-stable set was originally referred to by von Neumann and Morgenstern as a solution. Roth (1976)
introduced a generalization of vNM-stability called a subsolution: A subsolution is any set S such that (1)
S ⊆ π(S) and (2) S = π2(S) (and we used above Roth’s argument to show the existence of a subsolution).
The reason we do not call our set Sn a subsolution is that the definition of blocking is different in our
framework than under the traditional vNM-stability. We thank Federico Echenique for pointing out this
connection.

15Following the exposition in Roth and Sotomayor (1992), we refer to it as the Pointing Lemma.
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Lemma 3 (Classical Pointing Lemma). Consider a marriage problem where the men and
women have strict preferences and let µ and µ′ be stable matchings. Then:

(i) no man and woman point at each other unless they are matched under both µ and µ′;

(ii) no two women point at the same man; and

(iii) no two men point at the same woman.

The key implication of the Pointing Lemma is that the assignments µ ∨ ν (defined by
each man is assigned to the woman he is pointing at) and µ ∧ ν (defined as each woman
is assigned to the man she is pointing at) are well defined. This is the basis of the Lattice
Theorem as all that remains is to show that µ ∨ ν and µ ∧ ν are also stable.

The Pointing Lemma is closely related to the Decomposition Lemma which is due to
Gale and Sotomayor (1985).

Lemma 4 (Classical Decomposition Lemma). Consider a marriage problem where the men
and women have strict preferences and let µ and µ′ be stable matchings. Let M(µ′) be the
set of men who prefer µ′ to µ and let W (µ) be the set of women who prefer µ to µ′. Then
µ′ and µ map M(µ′) onto W (µ).

The Pointing Lemma generalizes to many-to-one problems in a straightforward way
when schools have responsive preferences with quotas: instead of a choice function, each
school a has a strict preference over sets of students, say �a, and a quota qa (of available
seats at a). Then �a is responsive iff for any students i, j and any set H ⊆ A\{i, j} such
that |H| ≤ qa − 1, we have (i) H ∪ {i} �a H ∪ {j} iff i �a j, and (ii) H ∪ {i} �a H iff
i �a ∅; and (iii) ∅ �a H for any H ⊆ A with |H| > qa. Now we know that the set of stable
assignments of the many-to-one market corresponds to the set of stable assignments of the
one-to-one market where any school a is split into qa copies. A similar construction can be
done for two assignments which do not block each other,16 and hence the pointing lemma
carries over in a straightforward manner from one-to-one to many-to-one.

We will show that when schools have general choice functions that only the first two
conditions of the Pointing Lemma generalize. However, the Decomposition Lemma contin-
ues to hold. To the best of our knowledge, we are the first to generalize the Pointing and
Decomposition Lemmas when schools have choice functions instead of responsive prefer-
ences.

Since pointing indicates that the student is willing to form a blocking pair, the most
natural way to adapt pointing to non-responsive preferences is, given two assignments µ
and ν and given a student i ∈ µa \ νa, a points to i if i ∈ Ca(νa ∪ {i}).

For later purposes, instead, we define pointing using a seemingly stronger condition.
We will later show (in Corollary 2) that this condition is equivalent to the weaker version
of pointing.

16Simply consider µ\ν (where any school a receives students µa\νa)and ν\µ with appropriately reduced
capacities (where for any school a we reduce qa by |µa∩νa| and the set of students is shrunk to A\(∪a∈O(µa∩
νa))).
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Definition 4. Given two assignments µ and ν, student i points to µi (νi) if µiRiνi (νiRiµi),
and school a points to student i if i ∈ Ca(µa ∪ νa).

It is clear that under this definition of pointing that when a school points to a student,
then she is willing to form a blocking pair with that student. However, it is less clear that
each student will be pointed at. We first establish a weak version of the Pointing Lemma.

Lemma 5 (Weak Pointing Lemma). Let µ and ν be two individually rational assignments
which do not block each other. Then:

(i) no student and school point at each other unless they are assigned under both µ and
ν, and

(ii) no two schools point to the same student.

Proof. Consider any student i such that µi 6= νi. Without loss of generality, assume µiPiνi.
By individual rationality of µ and ν, we have µi ∈ O, say µi = a. Then i points to a. By
substitutability of Ca and i ∈ µa, if i ∈ Ca(µa ∪ νa), then i ∈ Ca(νa ∪ {i}). Therefore, if a
pointed to i (meaning i ∈ Ca(µa ∪ νa)), then i would block ν with µ (because µi = a), a
contradiction. For any student i such that µi 6= νi, by µiRii and νiRii, i must point to a
school. Therefore, if two schools point to the same student, there must be a student and a
school pointing at each other which would be a contradiction to the above.

Notice that we are missing the third conclusion of the Classical Pointing Lemma. The
generalization to the school assignment problem would be as follows: no two students
point at the same school unless they are classmates (i.e. they are both assigned to that
school under either µ or ν). The following example is taken from Ehlers and Klaus (2014)
and demonstrates that this result does not hold when a school does not have responsive
preferences.

Example 1. Let O = {a, b} and A = {s1, s2, j1, j2}. University a and university b are both
hoping to hire two economists. They are considering two senior candidates, s1 and s2, and
two junior candidates, j1 and j2. Candidates sx and jx are in the same field. University
a would prefer to hire seniors to juniors, but if it must hire a mixture of the two, it would
prefer to hire candidates in the same field. Specifically:

{s1, s2} �a {s1, j1} �a {s2, j2} �a {j1, j2} �a {s1, j2} �a {j1, s2} .

If a is only able to hire one economist, then its preferences are: s1 �a s2 �a j1 �a j2. Note
that the choice function Ca induced by �a satisfies substitutability and LAD, but �a is not
responsive because {s2, j2} �a {s2, j1} and j1 �a j2.

University b has the opposite preferences:

{j1, j2} �b {s1, j1} �b {s2, j2} �b {s1, s2} �b {s1, j2} �b {j1, s2} ,

and j1 �b j2 �b s1 �b s2. Again the choice function Cb induced by �b satisfies substi-
tutability and LAD, but �b is not responsive.

11



Both junior candidates prefer a to b whereas both senior candidates prefer b to a. Con-
sider the assignments

µ =

(
a b

{s1, j1} {s2, j2}

)
and ν =

(
a b

{s2, j2} {s1, j1}

)
,

where under assignment µ, a receives {s1, j1} and b receives {s2, j2} (and similar for ν).
It is straightforward to verify that µ and ν are both stable (and therefore, do not block each
other). Note that both junior candidates point to a. Similarly, both senior candidates point
to b, whereas university a points to the two senior candidates and university b points to the
two junior candidates.

Our objective is to show that the pointing procedure still leads to two well-defined
assignments: assigning each student to the school she points to, and assigning each student
to the school pointing to her. Eventually, we will show that if the original assignments are
legal, then the induced reassignments are legal. But it is interesting to note that this
construction applies to any two individually rational assignments which do not block each
other.

Definition 5. Given assignments µ and ν, define µ ∧ ν by µ ∧ νa = Ca(µa ∪ νa) for all
a ∈ O.

Our main focus is on any two individually rational assignments µ and ν which do not
block each other. Then µ ∧ ν is the reassignment resulting from assigning a student to
the school that is pointing to her. The following lemma demonstrates that this yields a
well-defined assignment.

Lemma 6. Let µ and ν be two individually rational assignments which do not block each
other. Then:

(i) µ ∧ ν is an individually rational assignment;

(ii) if i is assigned a school under µ, then i is assigned a school under µ ∧ ν; and

(iii) every school receives the same number of students under µ and µ ∧ ν.

Lemma 6 is essential for our construction of alternative assignments. We will prove it
formally using a counting argument; however, we first demonstrate the intuition for why
the result holds. For expositional purposes, we will call a student chosen if they are pointed
at by some school. First, we observe that if school a points to a student i, then i must be
assigned under both µ and ν. Consider Figure 1. In this case, a student i is assigned under
µ but not ν. Let µi = a. Moreover, since i was pointed at, it must be that i ∈ Ca(µa ∪ νa).
Therefore, so long as i prefers a to being unassigned (µ is individually rational), i is able
to block ν with µ.

Note that this leaves us with only a “small” number of students that school a may point
at: students that are assigned to some school under both µ and ν. But we have already
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Assigned
under µ

Assigned
under ν

pointed ati

Figure 1: So long as µ is individually rational, i blocks ν with µ.

observed in the Weak Pointing Lemma that no student is pointed at by two different schools
(otherwise she would block with one). Moreover, each school’s choice function satisfies
LAD. Therefore, each school points at weakly more students than they are assigned under
either µ or ν. Therefore, the number of students that are chosen must be weakly more than
the number of students assigned under either µ or ν. For example, Figure 2 illustrates a
contradiction. If, as in Figure 2, there is a student that is assigned under µ but not chosen,
then the number of students chosen would be strictly less than the number of students
assigned under µ or ν. However, there is only one way for the set of students to both lie
in the intersection of µ and ν and be weakly more than both µ and ν: the set of students
chosen must equal the set of students assigned under µ which must equal the set of students
assigned under ν.

Assigned
under µ

Assigned
under ν

pointed at

Figure 2: The number of student chosen must be less than or equal to the number of
students she is assigned under µ or ν.

We now prove Lemma 6 formally.

Proof. (i): Suppose for contradiction that there is a student i and a 6= b such that both
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i ∈ µ ∧ νa and i ∈ µ ∧ νb. Then i ∈ Ca(µa ∪ νa) and i ∈ Cb(µb ∪ νb). Then both a and b
point to i. Because a 6= b, (i ∈ µa and i ∈ νb) or (i ∈ µb and i ∈ νa), and i must point
to either a or b. Therefore, there is a student and a school pointing at each other which
contradicts the Pointing Lemma. In showing that µ ∧ ν is individually rational, we have
by definition Ca(µ ∧ νa) = µ ∧ νa.17 Furthermore, µiRii and νiRii imply µ ∧ νiRii. Hence,
µ ∧ ν ∈ IR.

(ii) and (iii): For counting purposes, in this proof we use the convention |µi| = 1 if µi 6= i
and |µi| = 0 if µi = i. First note that if µ ∧ νi = a but µi = i, then i blocks µ with ν:
by individual rationality, νi = aPii; and i ∈ Ca(µa ∪ νa) and substitutability of Ca imply
i ∈ Ca(µa ∪ {i}). Therefore, |µ ∧ νi| = 1 implies that |µi| = 1 and |νi| = 1. Hence,∑

i∈A

|µ ∧ νi| ≤
∑
i∈A

|µi|. (2)

By the Law of Aggregate Demand and µa ∪ νa ⊇ µa, |Ca(µa ∪ νa)| ≥ |Ca(µa)|. Therefore,∑
a∈O

|µ ∧ νa| ≥
∑
a∈O

|µa| (3)

Note that for any assignment λ we have∑
i∈A

|λi| =
∑
a∈O

|λa|. (4)

Combining the three equations yields that
∑

i∈A |µ ∧ νi| =
∑

i∈A |µi|. Since |µ ∧ νi| = 1
implies that |µi| = 1, it must also be that |µi| = 1 implies that |µ∧νi| = 1. Similarly, since
|µ∧ νa| ≥ |µa| for every school a and

∑
a∈O |µ∧ νa| =

∑
a∈O |µa|, it must be that for every

school a, |µa| = |µ ∧ νa|.

An immediate corollary of Lemma 6 is our version of the Rural Hospital Theorem
(where hospitals correspond to schools in our context).18 The Rural Hospital Theorem is
an important result for the residency matching program (Roth and Sotomayor, 1992). It
says that under any stable assignment, each hospital receives the same number of doctors.
It turns out that this result holds far more generally than when it is just applied to stable
assignments. In any two individually rational assignments which do not block each other,
each school is assigned the same number of students.

Corollary 1 (Rural Hospital Theorem). Let µ and ν be two individually rational assign-
ments which do not block each other. Then

(i) for any school a, |µa| = |νa|; and

17Note that substitutability and LAD of Ca imply IRC: for all X ⊆ Y , if Ca(Y ) ⊆ X, then Ca(X) =
Ca(Y ).

18One could also refer to this as the “Rural Schools Theorem” in our context with the appropriate
interpretation.
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(ii) for any student i, µi = i if and only if νi = i.

Proof. By Lemma 6, |µa| = |µ∧νa| = |νa| (which implies (i)), and if µi 6= i, then µ∧νi 6= i.
If νi = i, then by individual rationality of µ and ν, we have µiPii, and by Lemma 6,
µ ∧ νi = µi. Thus, letting µi = a, we have i ∈ Ca(µa ∪ νa) and by substitutability of Ca,
i ∈ Ca(νa ∪ {i}), which implies that i blocks ν with µ, a contradiction.

Lemma 6 allows us to strengthen the Pointing Lemma.

Corollary 2 (Strong Pointing Lemma). Let µ and ν be two individually rational assign-
ments which do not block each other.

(i) If a student is assigned a school under either µ or ν, then she points to one school
and is pointed to by one school.

(ii) For any school a, a points to |µa| = |νa| students and |µa| = |νa| students point to a.

(iii) Let i ∈ A be such that µi = b and νi = a. Then i ∈ Ca(µa ∪ {i}) if and only if
i ∈ Ca(µa ∪ νa).

Proof. (i): Consider a student i who is assigned a school under either µ or ν. By µ, ν ∈ IR,
i points to one school by strict preferences. By (ii) of Lemma 6, µ ∧ νi 6= i. Without loss
of generality, µ ∧ νi = µi = a. Since i ∈ Ca(µa ∪ νa), a points to i. Two schools cannot
point to i, or else we would violate the Pointing Lemma.
(ii): This follows from the same counting exercise as in the proof of Lemma 6. If some
school a had fewer than |µa| students pointing to it, then some school b would have to have
more than |µb| students pointing to it. Then b would have to point to one of these students
which would contradict the Pointing Lemma.
(iii): By substitutability of Ca, if i ∈ Ca(µa ∪ νa), then i ∈ Ca(µa ∪ {i}). In showing the
other direction, suppose that i ∈ Ca(µa ∪ {i}) but i /∈ Ca(µa ∪ νa). Because µ and ν do
not block each other, we must have b = µiPiνi = a and i does not point to a. Thus, i
points to µi = b. Because i /∈ Ca(µa ∪ νa), school a does not point to i. But then by (i),
school b must point to i meaning i ∈ Cb(µb ∪ νb). Now by substitutability of Cb, we have
i ∈ Cb(νb ∪ {i}). But then i blocks ν with µ, a contradiction.

We have already established that if we reassign each student to the school that is
pointing to her that this results in a well-defined assignment. It is immediate from Corollary
2 that reassigning students to the school they are pointing to is an individually rational
assignment. We refer to this assignment as µ ∨ ν.

Definition 6. Let µ and ν be two individually rational assignments which do not block
each other. Define the assignment µ ∨ ν as follows: for all i ∈ A,

µ ∨ νi = max
Pi

{µi, νi} .

Lemma 7. Let µ and ν be two individually rational assignments which do not block each
other. Then µ ∨ ν is an individually rational assignment.

15



Proof. First we show that for every school a, Ca(µ ∨ νa ∪ µa) = µa (and symmetrically
that Ca(µ ∨ νa ∪ νa) = νa). Suppose for contradiction that Ca(µ ∨ νa ∪ µa) 6= µa. Since
µ is individually rational, we have Ca(µa) = µa. By the Law of Aggregate Demand,
|Ca(µ∨νa∪µa)| ≥ |µa|, so if Ca(µ∨νa∪µa) 6= µa, there must exist i ∈ Ca(µ∨νa∪µa) such
that i /∈ µa. Therefore, µ ∨ νi = a and νi = a. In words, since µ ∨ νi = a, i prefers νi = a
to µi. Since i ∈ Ca(µ ∨ νa ∪ µa), by substitutability of Ca, i ∈ Ca(µa ∪ {i}). Therefore, i
blocks µ with ν which is a contradiction.

Second we prove the lemma. By construction, each student is assigned to only one
school, and by individual rationality of µ and ν we have µ ∨ νiRii. We must show that
for every school a, Ca(µ ∨ νa) = µ ∨ νa. By definition, Ca(µ ∨ νa) ⊆ µ ∨ νa. Suppose
µ∨ νi = a and assume without loss of generality that µi = a. We have already shown that
Ca(µ ∨ νa ∪ µa) = µa. Since i ∈ µa, i ∈ Ca(µ ∨ νa ∪ µa). Therefore, by substitutability of
Ca and i ∈ µ ∨ νa, i ∈ Ca(µ ∨ νa).

We conclude by showing that the Classical Decomposition Lemma generalizes to our
environment. In the classical formulation, the Decomposition Lemma asks the men and
women “Do you prefer µ or ν?”. We do not know the preferences of the schools but instead
know their choice functions. The analogous question (for the students) in choice language
is “Do you choose your assignment under µ or ν?”. Note that by construction, student i’s
answer is µ∨νi. We cannot ask a school “Do you choose µ or ν?” since we do not know the
schools preferences. However, we can ask them the following question: “Which students do
you choose among all the students you were assigned?” Note that by construction, school
a’s answer is µ ∧ νa. Our generalization of the Classical Decomposition Lemma is to show
that there is a one-to-one mapping between the two answers.

Lemma 8 (Generalized Decomposition Lemma). Let µ and ν be two individually rational
assignments which do not block each other, and let i be a student such that µi 6= νi.
Student i chooses school a if and only if school a rejects i. Formally, µ∨ νi = a if and only
if i 6∈ µ ∧ νa = Ca(µa ∪ νa).

Proof. Suppose that µi 6= νi and without loss of generality assume that i points to µi = a.
If i is not rejected by a (i ∈ µ∧νa), then a points at i. This contradicts the Weak Pointing
Lemma which says that a student and a school cannot point at each other. Similarly,
suppose that µi = a but that school a rejects i (i 6∈ µ ∧ νa). By the Strong Pointing
Lemma, some school points at i. It must be that νi points at i. Since a school and a
student cannot point at each other and νi points at i, it follows that i points at µi = a.

3.2 Lattice Theorem

Our goal is to eventually show that the set of legal assignments is a lattice. We first show
that a (weakly) larger set of assignments is a lattice.19 As a reminder, we defined S0 = ∅
(and thus, π(∅) = IR), and in general let Sk = π2(Sk−1) and Bk = π(Sk). Since π2

19We will in fact show that it is not a larger set but instead is the same set.
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is increasing, eventually Sn = Sn+1 for some n. The two key properties of Sn are (1)
Sn ⊆ π(Sn) (for any two assignments µ, ν ∈ Sn, µ and ν do not block each other); and (2)
Sn = π2(Sn) (if µ 6∈ Sn, then µ is blocked by an assignment in π(Sn)).

So far we have only compared individually rational assignments which do not block each
other. Next we strengthen our results by considering the additional structure inherent in
Sn. We will show that Sn is a lattice under the following partial order which was inspired
by Blair (1988) and Martinez et al. (2001).20 Strikingly, our results are analogous to the
properties of the stable set of assignments (Roth and Sotomayor, 1990) and the set of
individually rational assignments that eliminate justified envy (Wu and Roth, 2016).

µ ≥ ν if for every school a ∈ O,Ca(µa ∪ νa) = νa (5)

The following result from Blair (1988) will be useful.21

Lemma 9 (Blair 1988, Proposition 2.3). For all X, Y ∈ 2A and all a ∈ O, Ca(X ∪ Y ) =
Ca(Ca(X) ∪ Y ).

Proof. Let x ∈ Ca(X ∪ Y ). If x ∈ Ca(X) ∪ Y , then by substitutability of Ca we have x ∈
Ca(Ca(X)∪Y ). If x /∈ Ca(X)∪Y , then x ∈ X\Ca(X). But this contradicts substitutability
of Ca as x ∈ Ca(X ∪Y ) and x ∈ X imply x ∈ Ca(X). Thus, Ca(X ∪Y ) ⊆ Ca(Ca(X)∪Y ).

Because Ca(X) ⊆ X, LAD implies |Ca(X∪Y )| ≥ |Ca(Ca(X)∪Y )|. Hence, Ca(X∪Y ) =
Ca(Ca(X) ∪ Y ).

Lemma 10. Let µ and ν be two individually rational assignments which do not block each
other. Then

µ ∨ ν ≥ µ ≥ µ ∧ ν.

Proof. Let a ∈ O. By definition, µ ∧ νa = Ca(µa ∪ νa). Therefore:

Ca(µa ∪ (µ ∧ νa)) = Ca(µa ∪ Ca(µa ∪ νa))
= Ca(µa ∪ µa ∪ νa)
= Ca(µa ∪ νa)
= µ ∧ νa

where the second equality follows from Lemma 9. Therefore, µ ≥ µ ∧ ν (and of course, by
symmetry, ν ≥ µ ∧ ν).

In showing µ ∨ ν ≥ µ, suppose by contradiction that for some a ∈ O, Ca(µa ∪ (µ ∨
νa)) 6= µa. Because µ is individually rational, Ca(µa) = µa. Since µa ⊆ µa ∪ (µ ∨ νa),
LAD implies |Ca(µa ∪ (µ ∨ νa))| ≥ |µa|. Thus, by Ca(µa ∪ (µ ∨ νa)) 6= µa, there exists
i ∈ Ca(µa ∪ (µ ∨ νa))\µa. But then νi = a and aPiµi. By substitutability of Ca and
µa ∪ {i} ⊆ µa ∪ (µ ∨ νa), we have i ∈ Ca(µa ∪ {i}) and i blocks µ with ν, a contradiction.
Hence, Ca(µa ∪ (µ ∨ νa)) = µa for all a ∈ A, and µ ∨ ν ≥ µ.

20Note that it is an immediate corollary of Tarski’s Fixed Point Theorem that Sn is a lattice. However,
we will be able to prove the stronger properties of Sn by using first principles.

21For completeness, we include its proof.
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Lemma 11. Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. For any µ, ν ∈ S,
µ ∨ ν ∈ S and µ ∧ ν ∈ S. In particular, S with partial order ≥ is a lattice.

Proof. Let B = π(S). By assumption, S ⊆ B and S = π(B). Therefore, µ and ν are
not blocked by any assignment in B, and in particular, µ and ν do not block each other.
We have already shown that µ ∨ ν and µ ∧ ν are well-defined assignments. Furthermore,
by individual rationality of µ and ν and (ii) of Lemma 6, µ ∧ νiRii for all i ∈ A, and by
definition, Ca(µ∧νa) = Ca(µa∪νa) = µ∧νa. Thus, µ∧ν ∈ IR. By Lemma 7, µ∨ν ∈ IR.
All that remains is to show that µ ∨ ν and µ ∧ ν are not blocked by any assignment in B.

Suppose for contradiction that i blocks µ ∧ ν with λ ∈ B. By individual rationality of
µ ∧ ν, we have λi 6= i, say λi = b. If µ ∧ νi = i, then by (ii) of Lemma 6 we have µi = i
and νi = i. But then by substitutability of Cb and i ∈ Cb(µ∧ νb ∪ {i}) = Cb(µb ∪ νb ∪ {i}),
we have i ∈ Cb(µb ∪ {i}). Because i /∈ µb, now i blocks µ with λ, a contradiction to µ ∈ S.
Thus, µ ∧ νi 6= i, say µ ∧ νi = a and without loss of generality, assume µi = a. Since i
blocks µ ∧ ν with b,

i ∈ Cb(µ ∧ νb ∪ {i}). (6)

Note that Cb(X ∪ Y ) = Cb(Cb(X) ∪ Y ) (Lemma 9). Therefore,

Cb(Cb(µb ∪ νb) ∪ {i}) = Cb(µb ∪ νb ∪ {i}). (7)

By definition, µ ∧ νb = Cb(µb ∪ νb). Thus, by (6), i ∈ Cb(C(µb ∪ νb) ∪ {i}). By (7),
i ∈ Cb(µb ∪ νb ∪ {i}). By substitutability of Cb, i ∈ Cb(µb ∪ {i}). Therefore, bPiµi, i ∈
Cb(µb ∪ {i}), and λi = b where λ ∈ B = π(S). Therefore, i blocks µ with λ implying that
µ 6∈ π(B). This is a contradiction as µ ∈ S = π(B).

The proof for µ∨ν is similar. Suppose for contradiction that µ∨ν is blocked by student
i, school a, and assignment λ ∈ B where λi = a. We first show that there exists a student
j ∈ µ ∨ νa who is rejected when a chooses from µ ∨ νa ∪ {i}, i.e. j /∈ Ca(µ ∨ νa ∪ {i}).
Note that µ∧ ν is not blocked by i and λ as otherwise µ∨ νiPiµ∧ νi (Lemma 7) so i and a
would block µ ∧ ν with λ if i ∈ Ca(µ ∧ νa ∪ {i}). Therefore, i 6∈ Ca(µ ∧ νa ∪ {i}). Because
µ∧ν ∈ IR, we have Ca(µ∧νa) = µ∧νa. Thus, by LAD and substitutability of Ca, we have
Ca(µ∧νa∪{i}) = Ca(µa∪νa∪{i}) = µ∧νa. As a reminder, |µa| = |µ∧νa| = |νa| = |µ∨νa|.
By the Law of Aggregate Demand and µ ∨ ν ∈ IR,

|µ ∨ νa| = |Ca(µ ∨ νa)| ≤ |Ca(µ ∨ νa ∪ {i})| ≤ |Ca(µa ∪ νa ∪ {i})| = |µ ∧ νa| = |µ ∨ νa|.
Now all these inequalities become equalities. Because i ∈ Ca(µ∨ νa ∪{i}) and i /∈ Ca(µa ∪
νa ∪{i}), there must exist j ∈ µ∨ νa \Ca(µ∨ νa ∪{i}). Without loss of generality, µj = a.
Then i 6∈ Ca(µa ∪ {i}) or else i would block µ with λ. Because µ is individually rational,
Ca(µa) = µa. Therefore, by LAD and substitutability of Ca,

Ca(µa ∪ {i}) = µa. (8)

Note that

Ca(µa ∪ (µ ∨ νa) ∪ {i}) = Ca(Ca(µa ∪ µ ∨ νa) ∪ {i})
= Ca(µa ∪ {i})
= µa
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where the first equality follows from Lemma 9, the second equality follows from Lemma 5
(µ∨ ν ≥ µ and therefore, Ca(µa ∪ µ∨ νa) = µa), and the third inequality follows from (8).
However, j ∈ µa and therefore j ∈ Ca(µa∪ (µ∨νa)∪{i}). This contradicts substitutability
of Ca as j 6∈ Ca(µ ∨ νa ∪ {i}) but µ ∨ νa ∪ {i} ⊆ µa ∪ (µ ∨ νa) ∪ {i}.

3.3 Existence and Uniqueness

We are now ready to prove the main theorem. As a reminder, we set S0 = ∅, S1 = π2(∅),
Sk = π2(Sk−1) and Bk = π(Sk). We defined S as the first fixed point of our construction,
i.e. S = π2(S). Let B = π(S). By Lemma 11, S is a lattice, and we may let µI denote the
student-optimal assignment in S and µO denote the school-optimal assignment in S.

In the Appendix we establish that any such fixed point must be a legal set of assign-
ments.

Theorem 1. There exists a legal set of assignments.

We can now prove that there exists a unique legal set of assignments.

Theorem 2. There exists a unique legal set of assignments.

Proof. By Lemma 2, L is a legal set of assignments if and only if π(L) = L.
Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) S = π2(S). By the proof of Theorem

1, we have S = π(S). Thus, S is legal.
To show uniqueness, let L be any legal set of assignments. By (iii) of Lemma 1,

S1 ⊆ π(L) = L. By (i) of Lemma 1, π is decreasing. Therefore, π(L) = L ⊆ π(S1) = B1.
Repeating this argument, we find that

S0 ⊆ S1 ⊆ . . . Sn ⊆ L ⊆ Bn ⊆ . . . B1 ⊆ B2.

Since there exists n such that Sn = Bn, we conclude that L = Sn.

4 Discussion

4.1 Efficiency and Non-Wastefulness

First, we discuss various properties of the student-optimal legal assignment. Because any
individually rational assignment outside L is illegal, it must be that µI is not Pareto
dominated by any individually rational assignment.

Proposition 1. The student-optimal legal assignment µI is efficient among all individually
rational assignments.

Proof. Suppose that there exists ν ∈ IR such that for all i ∈ I, νiRiµ
I
i and for some j ∈ I,

νjPjµ
I
j . By Lemma 13 (in the Appendix) and L = S, ν /∈ L. Since ν is illegal, there exists

µ ∈ L which blocks ν. Thus, for some i ∈ A we have µiPiνiRiµ
I
i . But again by Lemma 13

(in the Appendix), µI
iRiµi, which is a contradiction to transitivity of Pi.
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The deferred-acceptance (DA) assignment is the student-optimal stable assignment and
it is found by the (student-proposing) deferred-acceptance (DA) algorithm.22 To the best
of our knowledge, Kesten’s efficiency adjusted DA (EADA) has only been defined for re-
sponsive choice functions. Kesten’s original EADA mechanism and the simplified EADA
mechanism (hereafter sEADA) introduced by Tang and Yu (2014) produce the same as-
signment when schools have responsive choice functions. The sEADA is based on the
concept of an underdemanded school. For a given assignment µ, a school a is underde-
manded if for every student i, µiRia. Tang and Yu (2014) note two facts that are critical
for their mechanism. First, under the DA assignment, there is always an underdemanded
school. For example, the last school that any student applies to is an underdemanded
school. Second, a student assigned by DA to an underdemanded school cannot be part of
a Pareto improvement. However, as Example 2 demonstrates, when choice functions are
not responsive, there does not have to exist an underdemanded school. In this case, Tang
and Yu’s algorithm no longer produces a Pareto efficient assignment.

Example 2. Let O = {a, b, c, d} and A = {1, 2, 3, 4, 5}, and suppose qa = 2 while all other
schools have a capacity of 1. Suppose the preferences of the students and the priorities of
the schools (other than a) are defined as below:

R1 R2 R3 R4 R5 �b �c �d

b a a c d 3 2 4
a c b d a 1 4 5

School a has more complicated preferences. Intuitively, a chooses at most one student from
students 1, 2, and 3 (where the students are ranked �a: 1, 2, 3) and at most one student
from 4 and 5 (where �′a: 4, 5). More formally, given a set of students X,

Ca(X) = (max
�a

X ∩ {1, 2, 3}) ∪ (max
�′

a

X ∩ {4, 5})

Note that Ca is substitutable and satisfies LAD. However, the DA assignment is:

µ =

(
1 2 3 4 5
a c b d a

)
However, there is no underdemanded school as 2 would prefer a, 1 would prefer b, 4 would
prefer c, and 5 would prefer d. Further, the DA assignment is Pareto dominated by the
following assignment:

ν =

(
1 2 3 4 5
b c a d a

)
It is straightforward to verify that ν is legal.23

22The proof of Lemma 13 contains a formal description of the DA-algorithm.
23To see that it is not blocked by any legal assignment, note that the only student with justified envy is

2. However, if 2 is assigned to a, then 1 must be assigned to b or else 1 will block with the DA assignment.
But if 1 is assigned to b, then 3 must be assigned to a or else she will block with the DA assignment.
However, it is not individually rational to assign both 2 and 3 to a.
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The following natural condition on choice functions guarantees that an underdemanded
school will exist. School a’s choice rule is q-acceptant if |Ca(X)| = min {q, |X|} for all
X ∈ 2A. A choice rule is acceptant if it is q-acceptant for some q. The null assignment is
underdemanded, so if a student is left unassigned by DA then there is an underdemanded
assignment. Otherwise, DA ends when each student that applies to a new school is ac-
cepted. In particular, in this final round, each school accepts a student without rejecting
another. If such a school has an acceptant choice function, then it has never rejected a
student. If a school never rejects a student under DA, then it is underdemanded. There-
fore, sEADA generalizes in a natural way when choice functions that are substitutable and
acceptant.24

The (simplified) Efficiency Adjusted Deferred Acceptance Mechanism (sEADA)
when choice functions are acceptant
Round 0: Run DA on the full population. For each underdemanded school25 a and each
student i assigned to a, permanently assign i to a and then remove both i and a.
Round k: Run DA on the remaining population. For each underdemanded school a and
each student i assigned to a, permanently assign i to a and then remove both i and a.26

Lemma 12. Let µ = DA(P ) and suppose µi is underdemanded. Then for any individually
rational and non-wasteful assignment ν such that νiPiµi, µ blocks ν.

Proof. Let ν be an individually rational and non-wasteful assignment such that νiPiµi.
Suppose for contradiction that µ does not block ν. Since µ has no justified envy, ν does not
block µ. Therefore, the Pointing Lemma holds. Let a = µi. Since a is underdemanded, for
every j /∈ µa, µjPja. In particular, if j ∈ νa \µa, then j does not point to a. Furthermore, i
does not point to a since by assumption νiPiµi = a. Therefore, the set of students pointing
to a is contained in µa\{i}. In particular, the number of students that point to a is strictly
less than |µa|. However, this contradicts the Pointing Lemma which says that if µ and ν
do not block each other, then |µa| = |νa| many students must point to a. Therefore, µ
blocks ν.

24To be precise, this is the definition of sEADA when all students consent to allowing their priority to be
violated. It is straightforward to modify the algorithm if some students do not consent or even if students
consent to some schools but not others.

25Note that a student may also be unassigned. For expositional convenience, we interpret being unas-
signed as being assigned to the null school which has unlimited capacity. Since the DA assignment is
individually rational, every student weakly prefers her assignment to being unassigned. Therefore, the null
school is underdemanded.

26We refer the reader to Kesten (2010) for the precise formulation of the mechanism, but for the reader
who is already familiar with the mechanism, we briefly discuss the difficulty in generalizing EADA directly.
EADA removes interrupters individually. Specifically, it runs DA and identifies the last interrupter pair
(i, s), i.e. student i is an interrupter at school s. The mechanism then removes s from i’s preference list
and then reruns DA on the modified preferences. However, when preferences are not responsive, removing
i from s’s choice set can have (at least theoretically) a significant impact on the students s chooses. In
contrast, sEADA removes the underdemanded school and all students assigned to it. Therefore, whether
that school has a general choice function is irrelevant to the defintion.
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Theorem 3. Suppose each school has an acceptant choice function. The student-optimal
legal assignment and sEADA coincide.

Proof. Because the student-optimal legal assignment is the unique efficient legal assign-
ment, it suffices to show that sEADA is legal.

We define an algorithm that is equivalent to sEADA but where instead of removing
students, we change their preferences. Set P 1 = P , and let µ1 = DA(P 1). We call a
student i underdemanded if i is assigned to an underdemanded school. Let U1 denote the
set of underdemanded students under µ1. Define preference profile P 2 as follows: if i ∈ U1,
then move µ1

i to the top of i’s preference list P 2
i ; and if i 6∈ U1, then leave i’s preferences

unchanged (i.e. P 2
i = P 1

i ). In general, given P k, let µk = DA(P k). Let Uk denote the
set of underdemanded students under µk, and we modify P k to create P k+1 as follows:
if i ∈ Uk, then move µk

i to the top of i’s preference P k+1
i ; and if i /∈ Uk, then leave i’s

preferences unchanged (i.e. P k+1
i = P k

i ). Note that Uk ⊆ Uk+1 since if a student does
not desire school a under her true preferences, then the student does not desire school a
when we move her assignment to the top of her preference list. The process stops once all
students are underdemanded. It is straightforward to verify that this is equivalent to the
sEADA procedure.

Observe that by construction, we have µk
iRiµ

k−1
i for all i ∈ A and all k ∈ N.

We prove by induction that for each integer k, (a) µk is legal and (b) if i ∈ Uk \ Uk−1

and ν is an assignment such that νiPiµ
k
i , then ν is illegal.27 By definition, µ1 is the DA

assignment which is stable. Therefore µ1 ∈ S1. Lemma 12 establishes part (b) of the base
step.

Let k > 1. Note that if Uk = Uk−1 then µk = µk−1 and the result holds trivially.
Now suppose Uk \ Uk−1 6= ∅. First, we show (a), i.e. µk is legal. If i blocks µk with
some other assignment under P , then P k

i 6= Pi (since µk is stable under P k). Therefore, by
construction i ∈ Uk−1. Now there exists l ∈ {1, . . . , k−1} such that i ∈ U l\U l−1. However,
if i ∈ U l and ν is an assignment such that νiPiµ

k
i , then by µk

iRiµ
l
i we have νiPiµ

l
i. But

then by the inductive hypothesis for l, ν is illegal. Since µk can only be blocked by illegal
assignments, µk is legal.

Next, we show part (b) of the inductive hypothesis. Our argument is analogous to the
proof of Lemma 12. Let i ∈ Uk \ Uk−1, and let ν be any assignment such that νiPiµ

k
i . Let

a = µk
i . By definition of Uk, a is an underdemanded school. Specifically, for every student

j such that µk
j 6= a, µk

jP
k
j a. Suppose for contradiction that ν is legal. Since we have already

shown that µk is legal, ν and µk do not block each other. We will show that there are not
enough students who point to a = µk

i . By assumption, νiPiµ
k
i ; therefore, i does not point

to a = µk
i . Consider any student j ∈ νa \ µk

a. Since a is underdemanded under P k, µk
jP

k
j a.

If P k
j = Pj, then µk

jPja and j does not point to a. If P k
j 6= Pj, then j ∈ Uk−1 (j was an

underdemanded student in an earlier round). By the inductive hypothesis, any assignment
she strictly prefers to µk (relative to her true preferences) is illegal. Since ν is legal, it must
be that µk

jPjνj = a. Therefore, j does not point to a. Therefore, no student j ∈ νa \ µk
a

points to a. Since i ∈ µk
a does not point to a, the number of students who point to a is

27We set U0 = ∅.

22



smaller than |µk
a|. However, this contradicts the Pointing Lemma. Therefore, ν must be

illegal.

Remark 1. First, by Theorem 3, for responsive choice functions, the student-optimal
legal assignment and EADA coincide. Thus, the student-optimal legal assignment and the
student-optimal “possible” assignment by Morrill (2017) coincide with the assignment made
by EADA. Second, we generalize the sEADA by Tang and Yu (2014) from responsive choice
functions to substitutable and acceptant choice functions. Third, the student-optimal legal
assignment offers a foundation for the extension of Kesten’s EADA from responsive choice
functions to choice functions satisfying substitutability and LAD.28

It is well-known that the student-optimal stable assignment is weakly efficient among
all individually rational assignments. Hence, (i) of Proposition 1 describes the important
advantage of the student-optimal legal assignment over the student-optimal stable assign-
ment.

As the example below shows, efficiency of the student-optimal legal assignment is not
guaranteed when Pareto domination is allowed via non-individually rational assignments
(and as it is known, the student-optimal stable assignment is not necessarily weakly effi-
cient). Furthermore, the example establishes that non-individually rationally assignments
are not necessarily blocked by legal assignments, and the Pointing Lemma may be violated.

Example 3. Let A = {1, 2}, O = {a, b}, P1 : a1b (where this stands for aP11P1b), P2 : b2a,
�a: 2a1 and �b: 1b2 (where this stands for Cb({1}) = Cb({1, 2}) = {1} and Cb({2}) = ∅).
Let µ0 be such that µ0

1 = 1 and µ0
2 = 2. Then IR = {µ0} and L = {µ0}, and µ0 is the

unique stable assignment. Considering µ such that µ1 = a and µ2 = b we see that µ0 is not
(weakly) efficient. In addition, µ and µ0 do not block each other but the pointing lemma
is violated for these two assignments: 1 and 2 would point to a school but no school would
point to a student.

One would expect legal assignments to be non-wasteful. The following example shows
that non-wasteful assignments may be legal. Of course, by Proposition 1, the student-
optimal legal assignment is non-wasteful (as otherwise it would not be efficient among
individually rational assignments).

Example 4. Let A = {1, 2}, O = {a, b, c}, P1 : bca1, P2 : acb1, �a: 12a, �b: 21b, and
�c: 12c. Letting µ′1 = b and µ′2 = a, it is easy to see that µ′ is the only stable assignment.
Letting µ′′1 = a and µ′′2 = b, it is obvious that µ′ and µ′′ do not block each other. Thus,
µ′′ ∈ L and L = {µ′, µ′′}. Letting ν1 = c and ν2 = a, we can see that 1 blocks ν with µ′

(and ν /∈ L). But then µ′′ ∈ L is wasteful because bP1µ
′′
1 and Cb(µ

′′
b∪{1}) = Cb({1}) = {1}.

Non-wastefulness allows for blocking of students and “empty” slots (in the sense that
adding a student to a school would result in the choice of this student and all previously
assigned students). However, as we show below, legal assignments satisfy a weaker property

28Note that it is even not clear what the right formulation of Kesten’s EADAM is for these environments.
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of non-wastefulness (where blocking is only allowed with unassigned students and “empty”
slots): µ is weakly non-wasteful if there exist no student i and school a such that µi = i,
aPii and Ca(µa ∪ {i}) = µa ∪ {i}.

Proposition 2. If µ is legal (µ ∈ L), then µ is weakly non-wasteful.

Proof. Let µ ∈ L. Suppose that µ is weakly wasteful. Then there exists a student i and a
school a such that µi = i, aPii and Ca(µa ∪ {i}) = µa ∪ {i}. Let µ′ be such that µ′i = a
and µ′j = µj for all j ∈ A\{i}. Then by the previous facts and µ ∈ IR, it follows that
µ′ ∈ IR. Since |µ′a| = |µa|+ 1 and the Rural Hospitals Theorem holds for all assignments
in L, we have µ′ /∈ L. Thus, there exist j ∈ A and ν ∈ L such that j blocks µ′ with ν.
Thus, νjPjµ

′
j and (letting νj = b) j ∈ Cb(µ

′
b ∪ {j}). Since µb ⊆ µ′b, substitutability of Cb

implies j ∈ Cb(µb ∪ {j}). If j 6= i, then µ′j = µj and j blocks µ with ν, a contradiction to
µ, ν ∈ L. If j = i, then bPiaPii and by µi = i, i blocks µ with ν, again a contradiction to
µ, ν ∈ L.

4.2 Strategy-Proofness

Below we consider centralized mechanism design where students have to report their pref-
erences to the clearinghouse. We keep everything fixed except for students’ preferences.
Let P i denote the set of all i’s strict preferences over O ∪ {i}, and PA = ×i∈AP i. Let M
denote the set of all assignments.

A mechanism is a function ϕ : PA →M choosing for profile P assignment ϕ(P ). Then
ϕ is strategy-proof if for all i ∈ A, all P ∈ PA and all P ′i ∈ P i we have ϕi(P )Riϕi(P

′
i , P−i).

This means that reporting the truth is a weakly dominant strategy. A mechanism is legal
if for all profiles P , ϕ(P ) is a legal assignment.

Let DA denote the student-proposing deferred-acceptance mechanism.

Theorem 4. DA is the unique strategy-proof and legal mechanism.

Proof. Because DA is stable, we have that DA is legal. Strategy-proofness of DA has been
established by Roth (1982) and Dubins and Freedman (1982).

In showing the converse, let ϕ be strategy-proof and legal. We show that for all P ∈
PA and all i ∈ A, ϕi(P )RiDAi(P ). Suppose not. Then there exists i ∈ A such that
DAi(P )Piϕi(P ). Thus, by individual rationality, DAi(P ) 6= i, say DAi(P ) = a. Let
P ′i ∈ P i be such that for all b ∈ O, (i) if bRia, then bR′ia and (ii) if aPib, then aP ′i iP

′
i b. By

construction, stability of DA(P ) under P implies stability of DA(P ) under (P ′i , P−i). Thus,
DA(P ) is legal under (P ′i , P−i). Then by the rural hospitals theorem of legal assignments,
we have ϕi(P

′
i , P−i) 6= i. Thus, by construction of P ′i ,

ϕi(P
′
i , P−i)RiaPiϕi(P ),

which implies that ϕ is not strategy-proof, a contradiction.
Hence, we have shown for all P ∈ PA and all i ∈ A, ϕi(P )RiDAi(P ). If ϕ 6= DA, then

ϕ must Pareto-dominate DA. This is a contradiction to Abdulkadiroğlu, Pathak and Roth
(2009) who show that no strategy-proof mechanism can Pareto-dominate DA.
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Thus, by Theorem 4, any strategy-proof mechanism different than DA must be illegal.
In particular, the top-trading cycles algorithm is illegal (and it is easy to see that all
variants of the Boston mechanism are illegal).29

4.3 Assignment with Contracts

Recall that A denotes the set of students and O denotes the set of schools. Let X denote
the set of all contracts. Each contract x ∈ X is associated with one student xA ∈ A and
one school xO ∈ O. Given Y ⊆ X , let Yi denote the set of contracts associated with student
i and Ya denote the set of contracts associated with school a.

Each student i has a strict preference Pi over Xi∪{i}. Let Ci denote the choice function
induced by Pi: for any Y ⊆ X , let Ci(Y ) = maxPi

Yi ∪ {i}.
Any school a has a choice function Ca : 2X → 2X such that for any Y ⊆ X we have

Ca(Y ) ⊆ Ya. Substitutability and LAD are straightforward to adapt to the setup with
contracts.

A (feasible) assignment is a set of contracts, µ ⊆ X , such that each student signs
only one contract: for each student i, |µi| ≤ 1. An assignment is individually rational
if for all i ∈ A, µi = Ci(µ) and for all a ∈ O, Ca(µ) = µa. Let IR denote the set of all
individually rational assignments. Given assignment µ, student i and school a block µ
via contract x if xPiµi and x ∈ Ca(µ ∪ {x}) (where this implies xA = i and xO = a). An
assignment µ is non-wasteful if there do not exist i and a and a contract x such that
xPiµi and Ca(µa ∪ {x}) = µa ∪ {x}. An assignment is fair if there do not exist i and a
and a contract x such that xPiµi and x ∈ Ca(µa ∪ {x}) 6= µa ∪ {x}. Now blocking among
assignments carries over in a straightforward fashion: i blocks µ with ν if for some x ∈ Xi,
(1) xPiµi, (2) x ∈ Ca(µa ∪ {x}) and (3) νi = x. Then µ blocks ν if there exists a student i
who blocks µ with ν.

Now L ⊆ IR is a legal set of assignments if and only if (i) for all ν ∈ IR\L there exists
µ ∈ L such that µ blocks ν and (ii) for all µ, ν ∈ L, µ does not block ν. The operator π is
defined in the same way as in the main text, and its properties carry over without change,
namely Lemma 1, Lemma 2, and that there exists n such that (1) Sn ⊆ π(Sn) and (2)
Sn = π2(Sn).

Regarding pointing, we let students and schools point to contracts instead of pointing
to schools and students. Given two assignments µ and ν, student i points to µi (νi) if
µiRiνi (νiRiµi) and school a points to x ∈ X if x ∈ Ca(µa ∪ νa). Then Lemma 5 (Weak
Pointing Lemma) carries over in the following way: let µ and ν be two individually rational
assignments which do not block each other. Then (i) no student and school point to the
same contract unless the contract belongs to µ and ν and (ii) no two schools point to
contracts which are associated with the same student.

Now with these modifications, it is easy to see that all our results and proofs continue
to hold in the assignment with contracts framework where schools’ choice functions satisfy
substitutability and LAD. This means that (i) there exists a unique legal set of assignments,

29One may also use Alva and Manjunath (2016) to show Theorem 4.
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(ii) this set is a lattice and (iii) there exists a student-optimal legal assignment which is
efficient and which provides a foundation of the generalization of Kesten’s EADAM to
assignment with contracts. We show these results in Appendix B.

5 Conclusion

When a school board chooses an assignment mechanism, it typically balances strategy-
proofness, efficiency, and fairness. However, a critical pragmatic consideration for any
board is which of the possible assignments are legal. We show that there is a unique set
of legal assignments, and that there is always a unique Pareto efficient assignment that
is legal. Prior to our work, it was thought that there was no “silver bullet” solution to
the school assignment problem as it is impossible for a mechanism to be both efficient
and eliminate justified envy (Abdulkadiroğlu and Sönmez, 2003). However, we show that
the only envy of a legal assignment is either unjustified or else is petty. Therefore, the
set of legal assignments satisfy a natural interpretation of fairness. Combined, our results
offer a foundation of the generalization of the assignment made by Kesten’s EADA from
responsive choice functions to our general framework. One may see this as the ideal school
assignment. It is the unique assignment that is legal and Pareto efficient. It is fair in a
meaningful way, and it Pareto dominates any other fair or legal assignment.

APPENDIX.

A Proof of Theorem 1

Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. By Lemma 11, S is a lattice.
Let µI be the student-optimal assignment in S and let µO be the school optimal assignment
in S. The key step for the proof of Theorem 1 is to show that any individually rational
assignment which is not blocked by S, must lie in between µI and µO with respect to
students’ preferences.

Lemma 13. For every λ ∈ π(S) and every student i, µI
i Ri λi Ri µ

O
i .

Proof. Let S be a set that satisfies (1) and (2) and let B = π(S). We say that school a is
possible for i if there exists a λ ∈ B such that λi = a. Let

B(i) = {a ∈ O | there exists λ ∈ B such that λi = a}

denote the set of possible schools for student i. Let P̂i be defined as follows: (i) for all
a ∈ B(i) and b ∈ O\B(i), aP̂iiP̂ib, (ii) for all a, b ∈ B(i), aP̂ib ⇔ aPib and (iii) for all
a, b ∈ O\B(i), aP̂ib ⇔ aPib. Now we introduce a natural modification of DA which we
call rDA (restricted DA): when we run DA we only allow a student to apply to a possible
school and we use the profile (P̂i)i∈N for students to apply to schools. Formally, the rDA
is defined as follows:
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Step 1: Each student i proposes to his most P̂i-preferred acceptable school. Let X1
a denote

the proposals received by school a. Then school a tentatively accepts Ca(X
1
a) and rejects

X1
a\Ca(X

1
a).

Step t: Any student i rejected in Step t − 1 proposes to his most P̂i-preferred acceptable
school among the ones which did not reject i (if there is no acceptable school left for i,
then i does not make any proposal). Let X t

a denote the set of proposals received by school
a and the ones tentatively accepted by a in the previous step. Then school a tentatively
accepts Ca(X

t
a) and rejects X t

a\Ca(X
t
a).

Stop: There are no rejected students or all rejected students have applied to all acceptable
schools. Then the tentative acceptances become final assignments, which we denote by µI .

Note that µI is stable under P̂ , which implies µI ∈ S.
We establish the result by showing that no student is rejected under rDA. This implies

that for each student i, µI
i is i’s favorite possible school (or equivalently, µI

i is i’s most
P̂i-preferred school).

If a student was rejected, then there would have to be a last student rejected. Call this
student i and the school that rejected her a. Note that a must be possible for i, so there
exists a ν ∈ B such that νi = a. Because ν ∈ B and µI ∈ S, ν and µI do not block each
other. Thus, by the Rural Hospital Theorem, µI

i 6= i. Let µI
i = b. Let X = {j ∈ A|b R̂j µ

I
j}

(in words, X is the set of students j such that b is possible for j and b is weakly preferred
to her assignment under rDA). By construction and stability of µI under P̂ , µI

b = Cb(X).
When i proposes to b, no student is rejected (since i is the last student rejected). Therefore,
by substitutability of Cb,

Cb(X \ {i}) = µI
b \ {i} . (9)

Since µI and ν do not block each other, by Lemma 6, ν ′ = µI ∨ ν is an individually
rational assignment. By the Strong Pointing Lemma, |ν ′b| = |µI

b | (ν ′b is the set of students
pointing at b). However, this leads us to our contradiction. By the definition of pointing,
ν ′b ⊆ X. Since νiPiµ

I
i , i 6∈ ν ′b. Therefore, ν ′b ⊂ X \ {i}; consequently, by the LAD and (9),

|Cb(ν
′
b)| < |µI

b |. But ν ′ is an individually rational assignment meaning Cb(ν
′
b) = ν ′b. Since

|ν ′b| = |µI
b |, |Cb(ν

′
b)| = |µI

b | which is a contradiction.
Therefore, we conclude that no student is rejected under rDA. Since for all λ ∈ B and

all i ∈ A, µI
i R̂iλi and λiR̂ii. It now follows that µI ∈ S and µI

iRiλi for all i ∈ A.
Similarly, when under school proposing rDA, a school a can only propose to student i

if a is possible for i, which we denote by B(a) = {i ∈ A |µi = a for some µ ∈ B}. Then
the school proposing rDA is defined as follows:

Step 1: Each school a proposes to all students belonging to Ca(B(a)). Let X1
i denote

the proposals received by student i. Then student i tentatively accepts the P̂i-preferred
acceptable school from X1

i and rejects the rest (and i rejects all schools if all proposals are
from unacceptable schools).

Step t: Let Rt−1
a denote the students who have rejected school a in a step before Step

t. Then school a proposes to all students belonging to Ca(B(a)\Rt−1
a ). Let X t

i denote
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the proposals received by student i. Then student i tentatively accepts the P̂i-preferred
acceptable school from X t

i and rejects the rest (and i rejects all schools if all proposals are
from unacceptable schools).

Stop: There is no rejected school. Then the tentative acceptances become final assignments,
which we denote by µO.

Again, note that µO is stable under P̂ , which implies µO ∈ S.
By an analogous argument, we show that no school is rejected under the school-

proposing rDA. Let µO be the outcome of school proposing rDA. Suppose for contra-
diction that some school is rejected: suppose student i rejects school a and that this is the
last time that a student rejects a school. Let student i reject school a at Step t. Then
i ∈ Ca(B(a)\Rt−1

a ). Since µO
a ⊆ B(a)\Rt−1

a , substitutability of Ca implies i ∈ Ca(µ
O
a ∪{i}).

We first show that a proposes to another student j after being rejected by i. Since a was
allowed to propose to i, there exists a ν ∈ B such that νi = a. Since ν and µO do not
block each other (because µO ∈ S), by the Rural Hospital Theorem |µO ∧ νa| = |µO

a |. Since
i ∈ νa\µO

a and i ∈ Ca(µ
O
a ∪{i}), there must exist j ∈ µO

a \Ca(µ
O
a ∪{i}). By substitutability

of Ca and µO
a ⊆ B(a)\Rt−1

a , we have j /∈ Ca(B(a)\Rt−1
a ). In words, a does not propose to j

until after i has rejected her. Note that if j was holding onto a proposal then i’s rejection
of a would not be the last rejection. Therefore, no other school proposed to j, and in
particular, j /∈ Cb(µ

O
b ∪ {j}) for any school b ∈ O\{a}. Therefore, when we apply the

pointing to µO and ν, school νj does not point to j. However, we have already concluded
that school a does not point to j (if j ∈ Ca(νa ∪ µO

a ), then by i ∈ νa and substitutability
of Ca, we have j ∈ Ca(µ

O
a ∪ {i}), a contradiction), so neither µO

j nor νj point to j. This
contradicts Corollary 2 which says that each student is pointed to by one school.

Because for all λ ∈ B and all i ∈ A, λiR̂iµ
O
i and λiR̂ii, now it follows that µO ∈ S and

λiRiµ
O
i for all i ∈ A.

We are now ready to prove the Theorem 1. The following two facts will be useful for
the proof of the uniqueness of a legal set (which is the main result).

Lemma 14. (i) For an assignment µ and a school a, let

V (µ, a) = {i ∈ A|aRiµi and ∃ν ∈ B such that νi = a} .

If µ ∈ S, then Ca(V (µ, a)) = µa.

(ii) If µ ∈ S, µjPja and a is possible for j, then j ∈ Ca(µa ∪ {j}).

Proof. In showing (i), note that S ⊆ IR and Ca(µa) = µa. By µa ⊆ V (µ, a) and LAD,
|Ca(V (µ, a))| ≥ |µa|. If Ca(V (µ, a)) 6= µa, then there exists i ∈ Ca(V (µ, a))\µa. For
student i we have the following: aPiµi and for some ν ∈ B, νi = a; if i ∈ Ca(µa∪{i}), then
i blocks µ with ν, a contradiction; thus by LAD, Ca(µa ∪{i}) = µa. But µa ⊆ V (µ, a) and
i ∈ Ca(V (µ, a)) would contradict substitutability of Ca.

In showing (ii), since a is possible, there exists λ ∈ B such that λj = a. By construction,
µ and λ do not block each other. Therefore, µ∧λ is well defined. Moreover, µ∧λj = a since
µjPjλj. Therefore, j ∈ Ca(µa ∪ λa). Thus, by substitutability of Ca, j ∈ Ca(µa ∪ {j}).
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Proof of Theorem 1: Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) S = π2(S).30 We
show that S = π(S) = B. Then by Lemma 2, S is a legal set of assignments.

Suppose by contradiction that there exists an assignment ν ∈ B \ S. Since ν 6∈ S, ν is
blocked by some student i with assignment µ ∈ B. Let a = µi. Note that there does not
exist φ ∈ S such that φi = a as otherwise, i would block ν with φ in which case ν /∈ B.

Thus, by Lemma 13, µI
i Pi a Pi µ

O
i . For student i, define the “legal” schools for i as

S(i) = {d ∈ O | ∃φ ∈ S such that φi = d} .

Among i’s legal schools that she prefers to a, let b be her least favorite, i.e. b ∈ S(i),
bPia, and there does not exist d ∈ S(i) such that bPidPia. Similarly, let c be i’s favorite
school among her legal schools that she likes less than a, i.e. c ∈ S(i), aPic, and there
does not exist d ∈ S(i) such that aPidPic. By Lemma 13, b and c are well-defined. Let

X
b

= {φ ∈ S|φi = b}. Note that if φ, φ′ ∈ Xb, then φ ∧ φ′i = b and therefore φ ∧ φ′ ∈ Xb.
Thus, Xb has a well-defined minimum element (with respect to students’ preferences). Let

µ := min
>
X

b
(10)

Now we define the students’ favorite assignment that is worse than µ. Let

X = {φ ∈ S |µ 6= φ and µiRiφi for all i ∈ A} .

Note that by our choice of b and c we have for all φ ∈ X, b = φi or cRiφi. If b = φi, then

φ ∈ Xb
, a contradiction to φ 6= µ and µjRjφj for all j ∈ A. Thus, for all φ ∈ X, cRiφi.

Now note that if φ, φ′ ∈ X, then φ ∨ φ′ ∈ X because µi = bPiφ ∨ φ′i. Therefore, X has a
well-defined maximum assignment. Let

µ := max
>

X (11)

As shown already above, we have cRiµi
. If c 6= µ

i
, then by c ∈ S(i), there exists φ ∈ S

such that φi = c. Because S is a lattice and bPic, we have φ∧ µ ∈ S and φ∧ µi = c. Since
µjRjφ ∧ µj for all j ∈ A and µ 6= φ ∧ µ, we have φ ∧ µ ∈ X. Hence, we must have µ

i
= c.

Claim 1: µjRjµj
for all j ∈ A and consequently for every school d, V (µ, d) ⊆ V (µ, d).

Claim 1 follows from our construction of µ and µ: we have µjRjµj
for all j ∈ A. Thus,

V (µ, d) ⊆ V (µ, d) for all d ∈ O. In particular, µ ∈ X and for every φ ∈ X, µjRjφj for all
j ∈ A.

Since µiPia = µi, we have µ∧µi = a. In particular, i ∈ Ca(µa∪µa) and by substitutabil-
ity of Ca, i ∈ Ca(µa ∪ {i}). By the Rural Hospitals Theorem, |µa| = |Ca(µa ∪ µa)|. Thus,
by LAD, |Ca(µa ∪ {i})| = |µa|, and there exists a unique student r1 ∈ µa \ Ca(µa ∪ {i}).

30Recall that the existence of S is assured because π2 is an increasing function and for some n we have
Sn = π2(Sn). As we have shown, Sn ⊆ π(Sn) holds as well.
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We show µr1 6= µ
r1

: otherwise by definition, µr1 = µ
r1

= a. But then µ ∧ µ
r1

= a and

r1 ∈ Ca(µa ∪ µa
). If i ∈ Ca(µ ∧ µa

∪ {i}), then by µ ∧ µ = µ, we have that i blocks µ with
µ, a contradiction to µ ∈ S. Thus,

i /∈ Ca(µ ∧ µa
∪ {i}) = Ca(Ca(µa ∪ µa

) ∪ {i}) = Ca(µa ∪ µa
∪ {i}),

where the first equality follows from the definition of µ∧µ and second one from Lemma 9.
Thus, i /∈ Ca(µa ∪ µa

∪ {i}) and r1 ∈ Ca(µa ∪ µa
). Now by substitutability of Ca and the

LAD, we must have r1 ∈ Ca(µa ∪ µa
∪ {i}). This is a contradiction to r1 /∈ Ca(µa ∪ {i})

and substitutability of Ca. Thus, we must have µr1 6= µ
r1

and µr1Pr1µr1
.

Then r1 ∈ µa \ Ca(µa ∪ {i}) and in words, r1 is the student a would reject if i applied
to it.

We define an iterative procedure that is a variation of the vacancy chains that is inherit
in the Deferred Acceptance algorithm (when students apply sequentially à la McVitie and
Wilson). For each student l, define all schools that l strictly prefers to µl to have rejected
l. Formally, letting for student l,

Ō(l) = {d ∈ O | d ∈ B(l) and µlRld}.

Then student l uses the preference P̄l defined by (i) for all d, e ∈ Ō(l), dP̄le⇔ dPle and (ii)
for all d ∈ Ō(l) and all e ∈ O\Ō(l), dP̄llP̄le. Reject r1 from a. This starts a vacancy chain.
We only allow student l to apply to school b if b is possible for l. Whenever a student is
rejected, she applies to her favorite possible school that has not yet rejected her. In other
words, we use the profile (P̄l)l∈A for the vacancy chain (starting first with rejecting r1 from
a). Each time a school receives a new application, it chooses among all the students that
have ever applied to it.

Claim 2: In the vacancy chain, no student j applies to a school worse than µ
j
.

If not, then let l be the first student in the vacancy chain rejected by her school µ
l
. Let

d = µ
l

and let Y be all students who have applied to d. For every j ∈ Y , dRjµj
since l is

the first student rejected by her assignment under µ. Thus,

Y ⊆ V (µ, d) =
{
j ∈ A|dRjµj

and ∃ν ∈ B such that νj = d
}
.

By (i) of Lemma 14, Cd(V (µ, d)) = µ
d
. Therefore, by µ

l
= d and substitutability of Cd, l

cannot be rejected by d, a contradiction.

Note that Claim 2 also holds for student r1 because µr1Pr1µr1
.

In the above definition of the vacancy chain, if a student j ever applies to school a,
then we pause to make sure that a is better off despite the fact that a did not voluntarily
reject r1. For now, assume that if student j applies to a in the vacancy chain. By Claim 2,
aRjµj

. By (i) of Lemma 14 and the LAD, a chooses exactly |µ
a
| = |µa| students (because

every student applying to d belongs to V (µ, d)). Prior to j’s application, a is holding onto
|µa| − 1 proposals (because we rejected r1 ∈ µa). If we allowed a to choose amongst r1, j,
and the |µa| − 1 proposals she is holding, then she would wish to hold onto |µa| proposals
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and reject one student. Call this student r2. If r2 = r1 (the student we already rejected),
then we stop (because we rejected the “right” student in first place). Otherwise, school a
rejects r2 and we continue. Note that in this case, a’s new application did not come from i
or else a would have wanted to reject r1 by construction. Set j = j1. Continue the vacancy
chain with r2 as the rejected student. In general, whenever a student jm proposes to a,
we check to see if r1 ∈ Ca(µa ∪ {j1, . . . , jm}). If r1 6∈ Ca(µa ∪ {j1, . . . , jm}), then we stop
(because we rejected the “right” student r1 in first place). If r1 ∈ Ca(µa ∪ {j1, . . . , jm}),
then jm 6= i (as otherwise substitutability would be violated by r1 /∈ Ca(µa ∪ {i})), and a
would prefer to reject one of her current proposals and keep r1. We allow a to reject this
student and continue.

The process ends when r1 6∈ Ca(µa∪{j1, . . . , jm}) for some m or when a student has been
rejected by every school that is possible for her or when a school accepts the application
without rejecting one of its current students. Let φ be the assignment that results from
this process. By Claim 2, we have for all j ∈ A, φjRjµj

.

Claim 3: The vacancy chain ends with an application to a.
There are only three ways for the vacancy chain to end: (1) a student applies to a, (2) a

student applies to a school b 6= a and b accepts the student without rejecting any student,
and (3) a student is rejected by all of her possible schools.

We show that (3) does not occur. If student l is part of the vacancy chain, then µl 6= l.
Therefore , µ

l
6= l by the Rural Hospital Theorem. Since by Claim 2, φlRlµl

, we have
φl 6= l. Therefore, the vacancy chain does not end with a student having been rejected by
all possible schools. Similarly, (2) does not occur: for every school b 6= a, |µb| = |µb

|. Since
φjRjµj

for all j ∈ A, we have V (φ, b) ⊆ V (µ, b) (meaning that b has more students to choose

from under µ as the students are less happy with their assignment). By (i) of Lemma 14, we
have Cb(V (µ, b)) = µ

b
. But then |φb| > |µb

| would violate the Law of Aggregate Demand
for b to accept a student without rejecting another (because φb ⊆ V (µ, b)). Therefore, (1)
must occur and the vacancy chain can only conclude when a student l applies to a.

Claim 4: φ ∈ S.
For any school b 6= a, school b receives a better set of students under φ than under µ as

it has weakly more students to choose from. Mathematically, Cb(φb ∪µb) = φb. School a is
the only school which did not voluntarily reject all of its students as a did not voluntarily
reject r1. However, the key point is that the vacancy chain must stop with an application
to a, and we only stop after an application to a if a now wants to reject r1. Therefore,
a is made strictly better off by the vacancy chain. Consider a student j and a school b
such that b is possible for j and bPjφj. If bPjµj, then j 6∈ Cb(µb ∪ {j}) or else µ would
be blocked. Since b did not choose j before, b does not choose j now that she has weakly
more students to chose from. If µjRjb then j was rejected by b during the vacancy chain
and j is not able to block φ with b.

Claim 5: aPiφi

Since φ ∈ S, we have φi 6= a. Suppose by contradiction that φiPia. By our choice
of b and c and φ ∈ S, this can only happen if i was never rejected from b. Therefore,
b = φi = µi. Because the vacancy chain stops with an application to a where r1 is rejected,
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we must have a = µr1Pr1φr1 . By Claim 4, φ ∈ S and thus, φ ∈ Xb. But now this is a

contradiction as µ = min>X
b
.

Now Claim 5 yields the contradiction: student i applied in the vacancy chain to a
before applying to φi (because a ∈ Ō(i)). But when i applied to a, the vacancy chain
must stop as r1 ∈ µa\Ca(µa ∪ {i}), i ∈ Ca(µa ∪ {i}), and thus when jm = i, we must have
r1 /∈ Ca(µa∪{j1, . . . , jm}) as otherwise substitutability of Ca is violated. But then we must
have a = φi which contradicts Claim 5. �

B Assignment with Contracts

Recall that A denotes the set of students and O denotes the set of schools. Let X denote
the set of all contracts. Each contract x ∈ X is associated with one student xA ∈ A and
one school xO ∈ O. Given Y ⊆ X , let Yi denote the set of contracts associated with student
i and Ya denote the set of contracts associated with school a.

Each student i has a strict preference Pi over Xi∪{i}. Let Ci denote the choice function
induced by Pi: for any Y ⊆ X , let Ci(Y ) = maxPi

Yi ∪ {i}.
Any school a has a choice function Ca : 2X → 2X such that for any Y ⊆ X we have

Ca(Y ) ⊆ Ya. Substitutability and LAD are straightforward to adapt to the setup with
contracts.

Any µ ⊆ X is an assignment. An assignment µ is individually rational if for all i ∈ A,
µi = Ci(µ) and for all a ∈ O, Ca(µ) = µa. Let IR denote the set of all individually rational
assignments. Again, throughout we consider only individually rational assignments. Given
assignment µ, student i and school a block µ via contract x if xPiµi and x ∈ Ca(µ∪ {x})
(where this implies xA = i and xO = a). An assignment µ is non-wasteful if there
do not exist i and a and a contract x such that xPiµi and Ca(µa ∪ {x}) = µa ∪ {x}.
An assignment is fair if there do not exist i and a and a contract x such that xPiµi

and x ∈ Ca(µa ∪ {x}) 6= µa ∪ {x}. Now blocking among assignments carries over in a
straightforward fashion: i blocks µ with ν if for some x ∈ Xi, (1) xPiµi, (2) x ∈ Ca(µa∪{x})
and (3) νi = x. Then µ blocks ν if there exists a student i who blocks µ with ν.

Now L ⊆ IR is a legal set of assignments if and only if (i) for all ν ∈ IR\L there exists
µ ∈ L such that µ blocks ν and (ii) for all µ, ν ∈ L, µ does not block ν.

The operator π : 2IR → 2IR is defined in the same way as in the main text, and its
properties carry over without change, namely Lemma 1, Lemma 2, and that there exists n
such that (1) Sn ⊆ π(Sn) and (2) Sn = π2(Sn).

Regarding pointing, we let students and schools point to contracts instead of pointing
to schools and students. Given two assignments µ and ν, student i points to µi (νi) if
µiRiνi (νiRiµi) and school a points to x ∈ X if x ∈ Ca(µa ∪ νa). Then Lemma 5 (Weak
Pointing Lemma) carries over in the following way: let µ and ν be two individually rational
assignments which do not block each other. Then (i) no student and school point to the
same contract unless the contract belongs to µ and ν and (ii) no two schools point to two
contracts which are associated with the same student. For the remainder of the Appendix,
we use Lemma A’ to denote Lemma A from the main text translated to the setting of
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assignment with contracts.

Lemma 5’(Weak Pointing Lemma) Let µ and ν be two individually rational assignments
which do not block each other. Then:

(i) no student and school point to the same contract unless the contract belongs to both
µ and ν, and

(ii) no two schools point to two contracts which are associated with the same student.

Proof. Consider any student i such that µi 6= νi. Without loss of generality, assume µiPiνi.
By individual rationality of µ and ν, we have µi 6= i. Let (µi)O = a. Then i points to
µi. By substitutability of Ca and µi ∈ µa, if µi ∈ Ca(µa ∪ νa), then µi ∈ Ca(νa ∪ {µi}).
Therefore, if a pointed to µi (meaning µi ∈ Ca(µa ∪ νa)), then i would block ν with µ
(because µi ∈ µa), a contradiction. For any student i such that µi 6= νi, by µiRii and νiRii,
i must point to a contract. Therefore, if two schools point to two contracts associated
with the same student, there must be a student and a school pointing to the same contract
which would be a contradiction to the above.

Definition 5’ Given assignments µ and ν, define µ∧ν by µ∧νa = Ca(µa∪νa) for all a ∈ O.

Our main focus is on any two individually rational assignments µ and ν which do not
block each other. Then µ ∧ ν is the reassignment resulting from assigning a student to
the school that is pointing to her. The following lemma demonstrates that this yields a
well-defined assignment.

Lemma 6’ Let µ and ν be two individually rational assignments which do not block each
other. Then:

(i) µ ∧ ν is an individually rational assignment;

(ii) if µi 6= i, then µ ∧ νi 6= i; and

(iii) every school receives the same number of contracts under µ and µ ∧ ν, i.e. |µa| =
|µ ∧ νa|.

Proof. (i): Suppose for contradiction that there are two contracts x 6= y with xA = yA = i
and a, b ∈ O such that both x ∈ µ ∧ νa and y ∈ µ ∧ νb. Then x ∈ Ca(µa ∪ νa) and
y ∈ Cb(µb∪ νb). Then a points to x and b points to y. Then (x ∈ µa and y ∈ νb) or (x ∈ µb

and y ∈ νa), and i must point to either x or y. Therefore, there is a student and a school
pointing to the same contract which contradicts the Pointing Lemma. In showing that
µ ∧ ν is individually rational, we have by definition Ca(µ ∧ νa) = µ ∧ νa.31 Furthermore,
µiRii and νiRii imply µ ∧ νiRii. Hence, µ ∧ ν ∈ IR.

31Note that substitutability and LAD of Ca imply IRC: for all X ⊆ Y , if Ca(Y ) ⊆ X, then Ca(X) =
Ca(Y ).
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(ii) and (iii): For counting purposes, in this proof we use the convention |µi| = 1 if µi 6= i
and |µi| = 0 if µi = i. First note that if µ ∧ νi = x but µi = i, then i blocks µ with ν:
by individual rationality, νi = xPii; and x ∈ Ca(µa ∪ νa) and substitutability of Ca imply
x ∈ Ca(µa ∪ {x}). Therefore, |µ ∧ νi| = 1 implies that |µi| = 1 and |νi| = 1. Hence,∑

i∈A

|µ ∧ νi| ≤
∑
i∈A

|µi|. (12)

By the Law of Aggregate Demand and µa ∪ νa ⊇ µa, |Ca(µa ∪ νa)| ≥ |Ca(µa)|. Therefore,∑
a∈O

|µ ∧ νa| ≥
∑
a∈O

|µa| (13)

Note that for any assignment λ we have∑
i∈A

|λi| =
∑
a∈O

|λa|. (14)

Combining the three equations yields that
∑

i∈A |µ ∧ νi| =
∑

i∈A |µi|. Since |µ ∧ νi| = 1
implies that |µi| = 1, it must also be that |µi| = 1 implies that |µ∧νi| = 1. Similarly, since
|µ∧ νa| ≥ |µa| for every school a and

∑
a∈O |µ∧ νa| =

∑
a∈O |µa|, it must be that for every

school a, |µa| = |µ ∧ νa|.

An immediate corollary of Lemma 6’ is our version of the Rural Hospital Theorem for
the assignment with contracts setting.32

Corollary 1’ (Rural Hospital Theorem) Let µ and ν be two individually rational assign-
ments which do not block each other. Then

(i) for any school a, |µa| = |νa|; and

(ii) for any student i, µi = i if and only if νi = i.

Proof. By Lemma 6’, |µa| = |µ ∧ νa| = |νa| (which implies (i)), and if µi 6= i, then
µ ∧ νi 6= i. Let (µi)O = a. If νi = i, then by individual rationality of µ and ν, we have
µiPii, and by Lemma 6’, µ∧ νi = µi. Thus, µi ∈ Ca(µa ∪ νa) and by substitutability of Ca,
µi ∈ Ca(νa ∪ {µi}), which implies that i blocks ν with µ, a contradiction.

Lemma 6’ allows us to strengthen the Pointing Lemma.

Corollary 2’(Strong Pointing Lemma) Let µ and ν be two individually rational assign-
ments which do not block each other.

(i) If a student is assigned a contract under either µ or ν, then she points to a contract
and one school points to a contract which is associated with her.

32One could also refer to this as the “Rural Schools Theorem” in our context with the appropriate
interpretation.

34



(ii) For any school a, a points to |µa| = |νa| contracts and |µa| = |νa| students point
contracts associated with a.

Proof. (i): Consider a student i who is assigned a contract under either µ or ν. By µ, ν ∈
IR, i points to one contract by strict preferences. By (ii) of Lemma 6’, µ ∧ νi 6= i.
Without loss of generality, µ ∧ νi = µi and (µi)O = a. Since µi ∈ Ca(µa ∪ νa), a points to
µi. Two schools cannot point to two contracts associated with i, or else we would violate
the Pointing Lemma.
(ii): This follows from the same counting exercise as in the proof of Lemma 6’. If some
school a had fewer than |µa| students pointing to contracts associated with a, then some
school b would have to have more than |µb| students pointing to contracts associated with b.
Then b would have to point to one of these contracts which would contradict the Pointing
Lemma.

We have already established that if we reassign each student to the school that is point-
ing to her that this results in a well-defined assignment. We now show that reassigning
each student to the school she is pointing to is also a well-defined assignment. We refer to
this assignment as µ ∨ ν.

Definition 6’ Let µ and ν be two individually rational assignments which do not block
each other. Define the assignment µ ∨ ν as follows: for all i ∈ A, µ ∨ νi = maxPi

{µi, νi}.

Lemma 7’ Let µ and ν be two individually rational assignments which do not block each
other. Then µ ∨ ν is an individually rational assignment.

Proof. First we show that for every school a, Ca(µ ∨ νa ∪ µa) = µa (and symmetrically
that Ca(µ ∨ νa ∪ νa) = νa). Suppose for contradiction that Ca(µ ∨ νa ∪ µa) 6= µa. Since
µ is individually rational, we have Ca(µa) = µa. By the Law of Aggregate Demand,
|Ca(µ∨νa∪µa)| ≥ |µa|, so if Ca(µ∨νa∪µa) 6= µa, there must exist x ∈ Ca(µ∨νa∪µa) such
that x /∈ µa. Let xA = i. Therefore, µ ∨ νi = x and νi = x. In words, since µ ∨ νi = x, i
prefers νi = x to µi. Since x ∈ Ca(µ∨ νa∪µa), by substitutability of Ca, x ∈ Ca(µa∪{x}).
Therefore, i blocks µ with ν which is a contradiction.

Second we prove the lemma. By construction, each student is assigned only one con-
tract, and by individual rationality of µ and ν we have µ ∨ νiRii. We must show that for
every school a, Ca(µ∨ νa) = µ∨ νa. By definition, Ca(µ∨ νa) ⊆ µ∨ νa. Suppose µ∨ νi = x
and xO = a. Assume without loss of generality that µi = x. We have already shown that
Ca(µ ∨ νa ∪ µa) = µa. Since x ∈ µa, x ∈ Ca(µ ∨ νa ∪ µa). Therefore, by substitutability of
Ca and x ∈ µ ∨ νa, x ∈ Ca(µ ∨ νa).

Lemma 8’ (Generalized Decomposition Lemma) Let µ and ν be two individually rational
assignments which do not block each other, and let i be a student such that µi 6= νi. Student
i chooses contract x if and only if school a = xO rejects x. Formally, µ ∨ νi = x if and
only if x /∈ µ ∧ νa = Ca(µa ∪ νa).
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Proof. Suppose that µi 6= νi and without loss of generality assume that i points to µi = x,
and xO = a. If x is not rejected by a (x ∈ µ∧ νa), then a points to x. This contradicts the
Weak Pointing Lemma which says that a student and a school cannot point to the same
contract. Similarly, suppose that µi = x but that school a rejects x (x 6∈ µ ∧ νa). Then
school a does not point to x. By the Strong Pointing Lemma and since a school and a
student cannot point to the same contract, it follows that i points to µi = x.

As a reminder, we defined S0 = ∅ (and thus, π(∅) = IR), and in general let Sk =
π2(Sk−1) and Bk = π(Sk). Since π2 is increasing, eventually Sn = Sn+1 for some n. The
two key properties of Sn are (1) Sn ⊆ π(Sn) (for any two assignments µ, ν ∈ Sn, µ and
ν do not block each other); and (2) Sn = π2(Sn) (if µ 6∈ Sn, then µ is blocked by an
assignment in π(Sn)).

We define the following partial ordering over assignments:

µ ≥ ν if for every school a ∈ O,Ca(µa ∪ νa) = νa (15)

Lemma 10’ Let µ and ν be two individually rational assignments which do not block each
other. Then µ ∨ ν ≥ µ ≥ µ ∧ ν.

Proof. Let a ∈ O. By definition, µ ∧ νa = Ca(µa ∪ νa). Therefore:

Ca(µa ∪ (µ ∧ νa)) = Ca(µa ∪ Ca(µa ∪ νa))
= Ca(µa ∪ µa ∪ νa)
= Ca(µa ∪ νa)
= µ ∧ νa

where the second equality follows from Lemma 9. Therefore, µ ≥ µ ∧ ν (and of course, by
symmetry, ν ≥ µ ∧ ν).

In the proof of Lemma 7’ we demonstrated that for every school a, Ca(µ ∨ νa ∪ µa).
Therefore, by definition, µ ∨ ν ≥ µ.

Lemma 11’ Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. For any µ, ν ∈ S,
µ ∨ ν ∈ S and µ ∧ ν ∈ S. In particular, S with partial order ≥ is a lattice.

Proof. Let B = π(S). By assumption, S ⊆ B and S = π(B). Therefore, µ and ν are
not blocked by any assignment in B, and in particular, µ and ν do not block each other.
We have already shown that µ ∨ ν and µ ∧ ν are well-defined assignments. Furthermore,
by individual rationality of µ and ν and (ii) of Lemma 6’, µ ∧ νiRii for all i ∈ A, and by
definition, Ca(µ∧νa) = Ca(µa∪νa) = µ∧νa. Thus, µ∧ν ∈ IR. By Lemma 7’, µ∨ν ∈ IR.
All that remains is to show that µ ∨ ν and µ ∧ ν are not blocked by any assignment in B.

Suppose for contradiction that i blocks µ ∧ ν with λ ∈ B. By individual rationality of
µ ∧ ν, we have λi 6= i, say λi = x and xO = b. If µ ∧ νi = i, then by (ii) of Lemma 6’ we
have µi = i and νi = i. But then by substitutability of Cb and x ∈ Cb(µ ∧ νb ∪ {x}) =
Cb(µb ∪ νb ∪ {x}), we have x ∈ Cb(µb ∪ {x}). Because x /∈ µb, now i blocks µ with λ, a
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contradiction to µ ∈ S. Thus, µ ∧ νi 6= i, say µ ∧ νi = y and without loss of generality,
assume µi = y and yO = a. Since i blocks µ ∧ ν with x,

x ∈ Cb(µ ∧ νb ∪ {x}). (16)

Note that for any sets of contracts X and Y , Cb(X ∪ Y ) = Cb(Cb(X) ∪ Y ) (Lemma 9).
Therefore,

Cb(Cb(µb ∪ νb) ∪ {x}) = Cb(µb ∪ νb ∪ {x}). (17)

By definition, µ ∧ νb = Cb(µb ∪ νb). Thus, by (16), x ∈ Cb(Cb(µb ∪ νb) ∪ {x}). By (17),
x ∈ Cb(µb ∪ νb ∪ {x}). By substitutability of Cb, x ∈ Cb(µb ∪ {x}). Therefore, xPiµi,
x ∈ Cb(µb ∪ {x}), and λi = x where λ ∈ B = π(S). Therefore, i blocks µ with λ implying
that µ 6∈ π(B). This is a contradiction as µ ∈ S = π(B).

The proof for µ∨ν is similar. Suppose for contradiction that µ∨ν is blocked by student i
with assignment λ ∈ B where λi = x and xO = a. We first show that there exists a contract
y ∈ µ ∨ νa which is rejected when a chooses from µ ∨ νa ∪ {x}, i.e. y /∈ Ca(µ ∨ νa ∪ {x}).
We have already shown that µ ∧ ν is not blocked by i and λ (or by any other student);
therefore, x 6∈ Ca(µ ∧ νa ∪ {x}). Otherwise, i would block µ ∧ ν since λiPiµ ∨ νi implies
λiPiµ ∧ νi.

Because µ ∧ ν ∈ IR, we have Ca(µ ∧ νa) = µ ∧ νa. Thus, by LAD and substitutability
of Ca, we have Ca(µ ∧ νa ∪ {x}) = Ca(µa ∪ νa ∪ {x}) = µ ∧ νa. As a reminder, |µa| =
|µ ∧ νa| = |νa| = |µ ∨ νa|. By the Law of Aggregate Demand and µ ∨ ν ∈ IR,

|µ ∨ νa| = |Ca(µ ∨ νa)| ≤ |Ca(µ ∨ νa ∪ {x})| ≤ |Ca(µa ∪ νa ∪ {x})| = |µ ∧ νa| = |µ ∨ νa|.

Now all these inequalities become equalities. Because x ∈ Ca(µ ∨ νa ∪ {x}) and x /∈
Ca(µa∪νa∪{x}), there must exist y ∈ µ∨νa \Ca(µ∨νa∪{x}). Without loss of generality,
y ∈ µa and yA = j. Then x 6∈ Ca(µa ∪ {x}) or else i would block µ with λ. Because µ is
individually rational, Ca(µa) = µa. Therefore, by LAD and substitutability of Ca,

Ca(µa ∪ {x}) = µa. (18)

Note that

Ca(µa ∪ (µ ∨ νa) ∪ {x}) = Ca(Ca(µa ∪ µ ∨ νa) ∪ {x})
= Ca(µa ∪ {x})
= µa

where the first equality follows from Lemma 9, the second equality follows from Lemma 5’
(µ∨ ν ≥ µ and therefore, Ca(µa∪µ∨ νa) = µa), and the third inequality follows from (18).
However, y ∈ µa and therefore y ∈ Ca(µa∪(µ∨νa)∪{x}). This contradicts substitutability
of Ca as y 6∈ Ca(µ ∨ νa ∪ {x}) but µ ∨ νa ∪ {x} ⊆ µa ∪ (µ ∨ νa) ∪ {x}.

Lemma 13’ Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) π2(S) = S. Let µI be the
student-optimal assignment in S and let µO be the school optimal assignment in S. For
every λ ∈ π(S) and every student i, µI

i Ri λi Ri µ
O
i .
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Proof. Let S be a set that satisfies (1) and (2) and let B = π(S). We say that contract x
is possible for i if there exists λ ∈ B such that λi = x. Let

B(i) = {x ∈ Xi | there exists λ ∈ B such that λi = x}

denote the set of possible contracts for student i. Let P̂i be defined as follows: (i) for all
x ∈ B(i) and y ∈ Xi\B(i), xP̂iiP̂iy, (ii) for all x, y ∈ B(i), xP̂iy ⇔ xPiy and (iii) for all
x, y ∈ Xi\B(i), xP̂iy ⇔ xPiy. Now we introduce a natural modification of DA which we
call rDA (restricted DA): when we run DA we only allow a student to propose possible
contracts and we use the profile (P̂i)i∈N for students to propose contracts.33 Formally, the
rDA is defined as follows:

Step 1: Each student i proposes his most P̂i-preferred acceptable contract. Let X1
a denote

the proposed contracts received by school a. Then school a tentatively accepts Ca(X
1
a) and

rejects X1
a\Ca(X

1
a).

Step t: Any student i rejected in Step t − 1 proposes his most P̂i-preferred acceptable
contract among the ones which were not yet rejected (if there is no acceptable contract left
for i, then i does not make any proposal). Let X t

a denote the set of proposed contracts
received by school a and the ones tentatively accepted by a in the previous step. Then
school a tentatively accepts Ca(X

t
a) and rejects X t

a\Ca(X
t
a).

Stop: There are no rejected contracts or all rejected students have applied to all acceptable
contracts. Then the tentative acceptances become final assignments, which we denote by
µI .

Note that µI is stable under P̂ , which implies µI ∈ S.
We establish the result by showing that no contract is rejected under rDA. This implies

that for each student i, µI
i is i’s favorite possible contract (or equivalently, µI

i is i’s most P̂i-
preferred contract). If a contract was rejected, then there would have to be a last contract
rejected. Call this contract x. Let xA = i and xO = a, i.e. school a rejected x. Then
x must be possible for i, so there exists a ν ∈ B such that νi = x. Because ν ∈ B and
µI ∈ S, ν and µI do not block each other. Thus, by the Rural Hospital Theorem, µI

i 6= i.
Let µI

i = y and yO = b.
Let Y = {z ∈ Xb| for j = zA, z R̂j µ

I
j} (in words, Y is the set of contracts with b which

are possible for some student j and weakly preferred by j to her assignment under rDA).
By construction and stability of µI under P̂ , µI

b = Cb(Y ). When i proposes contract y to b,
no contract is rejected (since x is the last contract rejected). Therefore, by substitutability
of Cb,

Cb(Y \ {y}) = µI
b \ {y} . (19)

Since µI and ν do not block each other, by Lemma 6’, ν ′ = µI ∨ ν is an individually
rational assignment. By the Strong Pointing Lemma’, |ν ′b| = |µI

b | (ν ′b is the set of students
pointing to contracts associated with b). However, this leads us to our contradiction.

33Since choice functions satisfy substitutability and LAD, the cumulative offer process and DA coincide.
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By the definition of pointing, ν ′b ⊆ Y . Since νiPiµ
I
i , i points to x, not to any contract

associated with b, i.e. µI
i /∈ ν ′b. Therefore, ν ′b ⊂ Y \

{
µI
i

}
; consequently, by the LAD and

(19), |Cb(ν
′
b)| < |µI

b |. But ν ′ is an individually rational assignment meaning Cb(ν
′
b) = ν ′b.

Since |ν ′b| = |µI
b |, |Cb(ν

′
b)| = |µI

b | which is a contradiction.
Therefore, we conclude that no contract is rejected under rDA. Since for all λ ∈ B and

all i ∈ A, µI
i R̂iλi and λiR̂ii. It now follows that µI ∈ S and µI

iRiλi for all i ∈ A.
Similarly, when under school proposing rDA, a school a can only propose contract x if

x is possible for a, which we denote by B(a) = {x ∈ Xa |x ∈ µa for some µ ∈ B}. Then
the school proposing rDA is defined as follows:

Step 1: Each school a proposes all contracts belonging to Ca(B(a)). Let X1
i denote the

proposals received by student i. Then student i tentatively accepts the P̂i-preferred ac-
ceptable contract from X1

i and rejects the rest (and i rejects all contracts if all proposed
contracts are unacceptable).

Step t: Let Rt−1
a denote the contracts associated with school a which were rejected in a

step before Step t. Then school a proposes all contracts belonging to Ca(B(a)\Rt−1
a ). Let

X t
i denote the proposals received by student i. Then student i tentatively accepts the

P̂i-preferred acceptable contract from X t
i and rejects the rest (and i rejects all contracts if

all proposed contracts are unacceptable).

Stop: There is no rejected contract. Then the tentative acceptances become final assign-
ments, which we denote by µO.

Again, note that µO is stable under P̂ , which implies µO ∈ S.
By an analogous argument, we show that no contract is rejected under the school-

proposing rDA. Let µO be the outcome of school proposing rDA. Suppose for contradiction
that some contract is rejected: let student i be rejecting contract x, xO = a, and be this
the last time that a student rejects a contract. Let student i reject x at Step t. Then x ∈
Ca(B(a)\Rt−1

a ). Since µO
a ⊆ B(a)\Rt−1

a , substitutability of Ca implies x ∈ Ca(µ
O
a ∪ {x}).

We first show that a proposes another contract after i rejects x. Since a was allowed to
propose x, there exists a ν ∈ B such that νi = x. Since ν and µO do not block each other
(because µO ∈ S), by the Rural Hospital Theorem |µO ∧ νa| = |µO

a |. Since x ∈ νa \ µO
a and

x ∈ Ca(µ
O
a ∪ {x}), there must exist y ∈ µO

a \ Ca(µ
O
a ∪ {x}). By substitutability of Ca and

µO
a ⊆ B(a)\Rt−1

a , we have y /∈ Ca(B(a)\Rt−1
a ). In words, a does not propose y until after

i has rejected x. Note that if yA = j was holding onto a proposal then i’s rejection of x
would not be the last rejection. Therefore, no other school proposed a contract associated
with j, and in particular, z /∈ Cb(µ

O
b ∪ {z}) for any school b ∈ O\{a} and z ∈ Xj ∩ Xb.

Therefore, when we apply the pointing to µO and ν, school (νj)O does not point to νj.
However, we have already concluded that school a does not point to y (if y ∈ Ca(νa ∪ µO

a ),
then by x ∈ νa and substitutability of Ca, we have y ∈ Ca(µ

O
a ∪ {x}), a contradiction),

so neither a nor (νj)O point to a contract associated with j. This contradicts Corollary 2’
which says that one school points to a contract associated with j.

Because for all λ ∈ B and all i ∈ A, λiR̂iµ
O
i and λiR̂ii, now it follows that µO ∈ S and

λiRiµ
O
i for all i ∈ A.
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We are now ready to prove the main theorem. As a reminder, we set S0 = ∅, S1 = π2(∅),
Sk = π2(Sk−1) and Bk = π(Sk). We defined S as the first fixed point of our construction,
i.e. S = π2(S). Let B = π(S). The following two facts will be useful for the proof of the
uniqueness of a legal set (which is the main result).

We are now ready to prove the main theorem. As a reminder, we set S0 = ∅, S1 = π2(∅),
Sk = π2(Sk−1) and Bk = π(Sk). We defined S as the first fixed point of our construction,
i.e. S = π2(S). Let B = π(S). The following two facts will be useful for the proof of the
uniqueness of a legal set (which is the main result).

Lemma 14’

(i) For an assignment µ and a school a, let

V (µ, a) = {x ∈ Xa| for some i ∈ A, xRiµi and ∃ν ∈ B such that νi = x} .

If µ ∈ S, then Ca(V (µ, a)) = µa.

(ii) If µ ∈ S, µjPjx and x is possible for j (where xO = a), then x ∈ Ca(µa ∪ {x}).

Proof. In showing (i), note that S ⊆ IR and Ca(µa) = µa. By µa ⊆ V (µ, a) and LAD,
|Ca(V (µ, a))| ≥ |µa|. If Ca(V (µ, a)) 6= µa, then there exists y ∈ Ca(V (µ, a))\µa. For
student yA = i we have the following: yPiµi and for some ν ∈ B, νi = y; if y ∈ Ca(µa∪{y}),
then i blocks µ with ν, a contradiction; thus by LAD, Ca(µa∪{y}) = µa. But µa ⊆ V (µ, a)
and y ∈ Ca(V (µ, a)) would contradict substitutability of Ca.

In showing (ii), since x is possible, there exists λ ∈ B such that λj = x. By construction,
µ and λ do not block each other. Therefore, µ∧λ is well defined. Moreover, µ∧λj = x since
µjPjλj. Therefore, x ∈ Ca(µa∪λa). Thus, by substitutability of Ca, x ∈ Ca(µa∪{x}).

Theorem 1’ There exists a legal set of assignments.

Proof. Let S ⊆ IR be such that (1) S ⊆ π(S) and (2) S = π2(S).34 We show that
S = π(S) = B. Then by Lemma 2, S is a legal set of assignments.

Suppose by contradiction that there exists an assignment ν ∈ B \ S. Since ν 6∈ S, ν is
blocked by some student i with assignment µ ∈ B. Let x = µi. Note that there does not
exist φ ∈ S such that φi = x as otherwise, i would block ν with φ in which case ν /∈ B.

Thus, by Lemma 13’, µI
i Pi x Pi µ

O
i . For student i, define the “legal” contracts for i as

S(i) = {z ∈ Xi | ∃φ ∈ S such that φi = z} .

Among i’s legal contracts that she prefers to x, let y be her least favorite, i.e. y ∈ S(i),
yPix, and there does not exist z ∈ S(i) such that yPizPix. Similarly, let u be i’s favorite
school among her legal contracts that she likes less than x, i.e. u ∈ S(i), xPiu, and there
does not exist z ∈ S(i) such that xPizPiu. By Lemma 13’, y and u are well-defined. Let

34Recall that the existence of S is assured because π2 is an increasing function and for some n we have
Sn = π2(Sn). As we have shown, Sn ⊆ π(Sn) holds as well.
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X
y

= {φ ∈ S|φi = y}. Note that if φ, φ′ ∈ Xy, then φ ∧ φ′i = y and therefore φ ∧ φ′ ∈ Xy.
Thus, Xy has a well-defined minimum element (with respect to students’ preferences). Let

µ := min
>
X

y
(20)

Now we define the students’ favorite assignment that is worse than µ. Let

X = {φ ∈ S |µ 6= φ and µiRiφi for all i ∈ A} .

Note that by our choice of y and u we have for all φ ∈ X, y = φi or uRiφi. If y = φi, then
φ ∈ Xy

, a contradiction to φ 6= µ and µjRjφj for all j ∈ A. Thus, for all φ ∈ X, uRiφi.
Now note that if φ, φ′ ∈ X, then φ ∨ φ′ ∈ X because µi = yPiφ ∨ φ′i. Therefore, X has a
well-defined maximum assignment. Let

µ := max
>

X (21)

As shown already above, we have uRiµi
. If u 6= µ

i
, then by u ∈ S(i), there exists φ ∈ S

such that φi = u. Because S is a lattice and yPiu, we have φ∧µ ∈ S and φ∧µi = u. Since
µjRjφ ∧ µj for all j ∈ A and µ 6= φ ∧ µ, we have φ ∧ µ ∈ X. Hence, we must have µ

i
= u.

Let xO = a, yO = b and uO = c.

Claim 1: µjRjµj
for all j ∈ A and consequently for every school d, V (µ, d) ⊆ V (µ, d).

Claim 1 follows from our construction of µ and µ: we have µjRjµj
for all j ∈ A. Thus,

V (µ, d) ⊆ V (µ, d) for all d ∈ O. In particular, µ ∈ X and for every φ ∈ X, µjRjφj for all
j ∈ A.

Since µiPix = µi, we have µ∧µi = x. In particular, x ∈ Ca(µa∪µa) and by substitutabil-
ity of Ca, x ∈ Ca(µa ∪ {x}). By the Rural Hospitals Theorem, |µa| = |Ca(µa ∪ µa)|. Thus,
by LAD, |Ca(µa ∪ {x})| = |µa|, and there exists a unique contract t1 ∈ µa \ Ca(µa ∪ {x}).
Let (t1)A = r1.

We show µr1 6= µ
r1

: otherwise by definition, µr1 = µ
r1

= t1. But then µ ∧ µ
r1

= t1 and

t1 ∈ Ca(µa ∪ µa
). If x ∈ Ca(µ∧ µa

∪ {x}), then by µ∧ µ = µ, we have that i blocks µ with
µ, a contradiction to µ ∈ S. Thus,

x /∈ Ca(µ ∧ µa
∪ {x}) = Ca(Ca(µa ∪ µa

) ∪ {x}) = Ca(µa ∪ µa
∪ {x}),

where the first equality follows from the definition of µ∧µ and the second one from Lemma
9. Thus, x /∈ Ca(µa ∪ µa

∪ {x}) and t1 ∈ Ca(µa ∪ µa
). Now by substitutability of Ca and

the LAD, we must have t1 ∈ Ca(µa∪µa
∪{x}). This is a contradiction to t1 /∈ Ca(µa∪{x})

and substitutability of Ca. Thus, we must have µr1 6= µ
r1

and µr1Pr1µr1
.

Then t1 ∈ µa \Ca(µa ∪ {x}) and in words, t1 is a contract a would reject if µa ∪ {x} is
proposed.

We define an iterative procedure that is a variation of the vacancy chains that is inherit
in the Deferred Acceptance algorithm (when students propose sequentially à la McVitie
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and Wilson). For each student l, define all contracts that l strictly prefers to µl to have
been rejected. Formally, letting for student l,

Ō(l) = {z ∈ Xl | z ∈ B(l) and µlRlz}.

Then student l uses the preference P̄l defined by (i) for all v, w ∈ Ō(l), vP̄lw ⇔ vPlw and
(ii) for all v ∈ Ō(l) and all w ∈ O\Ō(l), vP̄llP̄lw. Let school a reject contract t1. This
starts a vacancy chain. We only allow student l to propose contracts which are possible
for l. Whenever a student is rejected, she proposes her favorite contract that has not been
rejected. In other words, we use the profile (P̄l)l∈A for the vacancy chain (starting first
with rejecting t1 by a). Each time a school receives a new application, it chooses among
all the contracts that have ever applied to it.

Claim 2: In the vacancy chain, no student j proposes a contract worse than µ
j
.

If not, then let l be the first student in the vacancy chain such that µ
l

is rejected. Let
d = (µ

l
)O and let Y be all contracts who have been proposed to d. For every z ∈ Y with

zA = j, zRjµj
since l is the first student rejected by her assignment under µ. Thus,

Y ⊆ V (µ, d).

By (i) of Lemma 14, Cd(V (µ, d)) = µ
d
. Therefore, by µ

l
∈ µ

d
and substitutability of Cd,

µ
l

cannot be rejected by d, a contradiction.

Note that Claim 2 also holds for student r1 because µr1Pr1µr1
.

In the above definition of the vacancy chain, if a student j ever proposes a contract
associated with school a, then we pause to make sure that school a is better off despite
the fact that a did not voluntarily reject t1. For now, assume that student j proposes zj
such that (zj)O = a in the vacancy chain. By Claim 2, zjRjµj

. By (i) of Lemma 14’ and

LAD, a chooses exactly |µ
a
| = |µa| contracts (because every student proposing a contract

associated with a, the contract then belongs to V (µ, a)). Prior to j’s proposal of zj, a is
holding onto |µa| − 1 proposals (because we rejected t1 ∈ µa). If we allowed a to choose
amongst t1, zj, and the |µa| − 1 proposals she is holding, then she would wish to hold onto
|µa| proposals and reject one contract. Call this contract t2 and (t2)A = r2. If t2 = t1 (the
contract we already rejected), then we stop (because we rejected the “right” contract in
first place). Otherwise, school a rejects t2 and we continue. Note that in this case, the new
proposed contract zj did not come from r1, or else (for j = r1) we have µj = t1Pjzj and by
(ii) of Lemma 14’, zj ∈ Ca(µa∪{zj}), and a would have wanted to reject t1 by construction.
Set j = j1 and j1 proposed zj1 . Continue the vacancy chain with t2 as the rejected contract.
In general, whenever a student jm proposes a contract zjm associated with a, we check to
see if t1 ∈ Ca(µa∪{zj1 , . . . , zjm}). If t1 6∈ Ca(µa∪{zj1 , . . . , zjm}), then we stop (because we
rejected the “right” contract t1 in first place). If t1 ∈ Ca(µa ∪ {zj1 , . . . , zjm}), then jm 6= r1
(as otherwise (ii) of Lemma 14’ and substitutability would be violated by t1 /∈ Ca(µa∪{x})),
and a would prefer to reject one of her current proposals and keep t1. We allow a to reject
this contract and continue.

The process ends when t1 6∈ Ca(µa ∪ {zj1 , . . . , zjm}) for some m or when a student’s
possible contracts all have been rejected or when a school accepts the application without
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rejecting one of its current contracts. Let φ be the assignment that results from this process.
By Claim 2, we have for all j ∈ A, φjRjµj

.

Claim 3: The vacancy chain ends with a proposed contract associated with a.
There are only three ways for the vacancy chain to end: (1) a student proposes a

contract associated with a, (2) a student proposes a contract associated with school b 6= a
and b accepts the contract without rejecting any contract, and (3) a student’s possible
contracts are all rejected.

We show that (3) does not occur. If student l is part of the vacancy chain, then
µl 6= l. Therefore, µ

l
6= l by the Rural Hospital Theorem. Since by Claim 2, φlRlµl

,
we have φl 6= l. Therefore, the vacancy chain does not end with a student’s possible
contracts all having been rejected. Similarly, (2) does not occur: for every school b 6= a,
|µb| = |µb

|. Since φjRjµj
for all j ∈ A, we have V (φ, b) ⊆ V (µ, b) (meaning that b has more

contracts to choose from under µ as the students are less happy with their assignment).
By (i) of Lemma 14’, we have Cb(V (µ, b)) = µ

b
. But then |φb| > |µb

| would violate the
Law of Aggregate Demand for b to accept a contract without rejecting another (because
φb ⊆ V (µ, b)). Therefore, (1) must occur and the vacancy chain can only conclude when a
student l proposes a contract associated with a.

Claim 4: φ ∈ S.
For any school b 6= a, school b receives a better set of contracts under φ than under µ as

it has weakly more contracts to choose from. Mathematically, Cb(φb∪µb) = φb. School a is
the only school which did not voluntarily reject all of its contracts as a did not voluntarily
reject t1. However, the key point is that the vacancy chain must stop with an application
to a, and we only stop after an application to a if a now wants to reject t1. Therefore, a is
made strictly better off by the vacancy chain. Consider a student j, contract zj and school
b = (zj)O such that zj is possible for j and zjPjφj. If zjPjµj, then zj 6∈ Cb(µb ∪ {zj}) or
else µ would be blocked. Since b did not choose zj before, b does not choose zj now that
she has weakly more contracts to choose from. If µjRjzj then zj was rejected by b during
the vacancy chain and j is not able to block φ with b and contract zj.

Claim 5: xPiφi

Since φ ∈ S, we have φi 6= x. Suppose by contradiction that φiPix. By our choice of
y and u and φ ∈ S, this can only happen if y was never rejected by school b. Therefore,
y = φi = µi. Because the vacancy chain stops with an application to a where t1 is rejected,
we must have t1 = µr1Pr1φr1 . By Claim 4, φ ∈ S and thus, φ ∈ Xb. But now this is a

contradiction as µ = min>X
b
.

Now Claim 5 yields the contradiction: student i proposed in the vacancy chain to x
before proposing to φi (because x ∈ Ō(i)). But when i proposed x, the vacancy chain must
stop as t1 ∈ µa\Ca(µa ∪ {x}), x ∈ Ca(µa ∪ {x}), and thus when jm = i, we must have
t1 /∈ Ca(µa ∪ {zj1 , . . . , zjm}) as otherwise substitutability of Ca is violated. But then we
must have x = φi which contradicts Claim 5.

The proof of Theorem 2 carries over unchanged to the assignment with contracts frame-
work, i.e. there exists a unique legal set of assignments. Since this set is a lattice, there
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exists a student-optimal legal assignment. Using Lemma 13’ and the same logic as in Propo-
sition 1, again it follows that this assignment is efficient among all individually rational
assignments.
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