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Abstract

Models of choice where agents see others as less sophisticated than
themselves have significantly different, sometimes more accurate, pre-
dictions in games than does Nash equilibrium. When it comes to the
maximal set of functions that are implementable in mechanism design,
however, they turn out to have surprisingly similar implications. Fo-
cusing on single-valued rules, we discuss the role and implications of
different behavioral anchors (arbitrary level-0 play), and prove a level-k
revelation principle. If a function is level-k implementable given any
level-0 play, it must obey a slight weakening of standard strict incentive
constraints. Further, the same condition is also sufficient for level-k
implementability, although the role of specific level-0 anchors is more
controversial for the sufficiency argument. Nonetheless, our results pro-
vide tight characterizations of level-k implementable functions under
a variety of level-0 play, including truthful, uniform, and atomless an-
chors.
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1 Introduction

Mechanism design aims at engineering rules of interaction that guarantee de-

sired outcomes while recognizing that participants may try to use their private

information to game the system to their advantage. The design problem thus

hinges upon a theory of how people make choices given the rules that are

being enforced. Oftentimes the concept of Nash equilibrium is used for that

purpose, but the past few years have seen a number of papers incorporating

lessons from behavioral economics into mechanism design.1

Models of choice where agents see others as less sophisticated than them-

selves have significantly different, sometimes more accurate, predictions in

games than does Nash equilibrium. Evidence suggests that theories of level-k

choice may provide a better description of people’s behavior, especially when

they are inexperienced.2 This paper is an attempt to understand the theoret-

ical implications of level-k reasoning in mechanism design.

The Nash equilibrium and level-k approaches assume that participants

are rational, to the extent that they maximize their preferences given their

beliefs regarding how others will play. The difference lies in how beliefs

are determined. Level-k theories break down the Nash-equilibrium rational-

expectations logic by assuming people see others as being less sophisticated

than themselves. Best responses then determine behavior by induction on the

individuals’ depth of reasoning, starting with an “anchor” that fixes the behav-

ior at level-0. This anchor captures people’s beliefs about how others would

play the game instinctively, as a gut reaction without resorting to rational

deliberation (Crawford, 2014).

The revelation principle (see, e.g., Myerson (1989) and the references therein)

1For instance, Eliaz (2002) allows for “faulty” agents, Cabrales and Serrano (2011) allow
agents to learn in the direction of better replies, Saran (2011) studies the revelation principle
under conditions over individual choice correspondences over Savage acts, Renou and Schlag
(2011) consider implementation with ε-minmax regret to model individuals who have doubts
about others’ rationality, Glazer and Rubinstein (2012) allow the content and framing of
the mechanism to play a role, and de Clippel (2014) relaxes preference maximization. The
discussion of the related literature below contains additional references.

2See, for example, Stahl and Wilson (1994, 1995), Nagel (1995), Ho et al. (1998), Costa-
Gomes et al. (2001), Bosch-Domènech et al. (2002), and Arad and Rubinstein (2012).
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offers an elegant characterization of the social choice functions that are (weakly)

Nash implementable. Indeed, there exists a mechanism with a Bayesian Nash

equilibrium that generates the social choice function if and only if the function

is Bayesian incentive compatible, which means that telling the truth forms a

Bayesian Nash equilibrium of the corresponding direct revelation game. How

does level-k implementation compare to this benchmark?

Addressing all the aspects of this question is not feasible in a single pa-

per. We are, therefore, somewhat limited in our scope. First, we choose to

concentrate on the level-k reasoning model in which each level-k individual

best-responds to her belief that all her opponents are of level-(k − 1). This is

for ease of exposition and without much loss of generality, as our results hold

for a wide range of behavioral theories where participants see others as less

sophisticated (see Remark 1 below).

Second, we investigate the implementability of single-valued social choice

rules or social choice functions. These have the advantage of pinning down

unequivocally the outcome that prevails, contingent on participants’ informa-

tion. This is the natural first step when studying implementation (see again,

for example, Myerson (1989)).

Third, we want the desired outcomes to obtain for all possible combinations

of positive depths of reasoning up to some level K ≥ 2.3 We opt for this robust

approach to level-k implementation as depths of reasoning may vary from indi-

vidual to individual, and even within a person, from mechanism to mechanism

(e.g., Agranov et al. (2012) provide evidence that individuals depths of rea-

soning could vary depending on their expectation about the depths of others).

The upper bound K is introduced to accommodate the experimental evidence

suggesting that depths of reasoning are usually rather small. Interestingly, our

results will be independent of the specific value of K.

Fourth, behavior with level-k reasoning can be highly sensitive to the level-

0 anchor. Throughout the paper, we will thus discuss many alternative sce-

narios regarding anchors. This becomes especially relevant when discussing

3For reasons discussed later, our notion of implementability excludes the outcomes pro-
duced at level-0.
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mechanism design beyond analyzing people’s behavior in classic mechanisms

such as a first-price auction or a double auction.

One could think at first that breaking the rational-expectations logic would

lead to a very different set of implementable functions. In particular, one may

conjecture that some functions can be implemented with level-k reasoning, but

not in Nash equilibrium. This is not the case in our framework. Suppose the

mechanism designer can pick the anchor in addition to picking the mechanism.

The extent to which she can do this is debatable, but what matters for our

point is that level-k implementation is most permissive under this scenario.

Thus, it should come as a surprise at first that, even with that power, the

mechanism designer can implement only Bayesian incentive compatible social

choice functions under level-k reasoning. This is our main result (Theorem 1),

which amounts to a level-k revelation principle and shows the limits of the

maximal set of implementable social choice functions. In fact, the restriction is

stronger, as the incentive constrains must be satisfied with a strict inequality

whenever the social choice function is responsive. We term this condition

SIRBIC, which stands for “strict-if-responsive Bayesian incentive compatible”

functions.4

As is often the case with versions of the revelation principle, the proof of

Theorem 1 provides the main insight without involving intricate mathematical

arguments. For an intuition, note that each player’s level-k strategy is a best

response to other players’ level-(k − 1) strategies, but whenever k > 1, this

level-k strategy composed with those level-(k − 1) strategies must implement

the social choice function of interest. That is, due to the definition of im-

plementation, the resulting outcome is the same as the truth-telling outcome

under the social choice function. Thus, although players’ beliefs about other

players’ strategies are not consistent like in equilibrium, whenever k > 1, level-

k of each player consistently believes that it can at best get the truth-telling

outcome under the social choice function. Since the truth-telling outcome is

4SIRBIC is a slight weakening of strict IC. For example, the optimal auction with a
reserve price in Myerson (1981) satisfies SIRBIC but violates strict IC because of the types
who do not participate in the auction; the same goes for the optimal bilateral trading
mechanism in Myerson and Satterthwaite (1983) and the types who do not trade therein.
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the best for him, then, in particular, lying when others tell the truth cannot

be better. This is exactly Bayesian incentive compatibility (an additional step

is required to take us to SIRBIC).

Next, we show that the converse of Theorem 1 holds as well. This re-

sult reinforces Theorem 1 as it shows that level-k implementability imposes

no additional restrictions beyond SIRBIC as far as the maximal set of imple-

mentable functions is concerned. Its applicability would be limited, though, if

the anchors needed to achieve implementability were unreasonable. However,

Theorem 2 is proved with truth-telling as an anchor in direct mechanisms:

Truth-telling is often invoked as focal, as argued below.

Uniform anchors, in the sense of picking an action uniformly at random,

are also often invoked in the literature, either to fit the behavior of experimen-

tal subjects in certain games, or more recently, when considering mechanism

design (see Related Literature). In this context, one naturally wonders which

social choice functions are level-k implementable with uniform anchors. We

tackle this question in Section 6.

Our answer is two-fold. For independent private values, SIRBIC is suffi-

cient once again when considering continuous social choice functions (Theo-

rem 3). At the same time, an additional necessary condition (a kind of mea-

surability condition) is identified for type-independent anchors in more general

interdependent environments (Theorem 4). In many circumstances, this con-

dition is sufficient once combined with SIRBIC (see online appendix). In our

quest to draw conclusions that hold for a wide class of behavioral anchors,

beyond the uniform case, the sufficiency results just mentioned also hold un-

der arbitrary atomless anchors for mechanisms with a continuum of messages.

The results are also robust to mixtures of truth-telling and atomless anchors.

Section 6 ends with an important word of caution regarding sufficiency results

for level-k mechanism design. We hope this discussion will foster further em-

pirical and theoretical research on the topic.

Related Literature

The paper contributes to a recent literature at the intersection of mecha-
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nism design and behavioral economics (see references in footnote 1). Several

papers have begun to investigate the implications of level-k behavior in clas-

sic mechanisms such as the first-price auction (Crawford and Iriberri (2007)),

the double auction (Crawford (2016)) and the expected externality mechanism

(Gorelkina (2017)).

Crawford et al. (2009) investigate how changing the reserve price in a first-

price auction may affect the bidding behavior of two risk-neutral bidders, as a

function of their depths of reasoning and their level-0 anchors. They provide

numerical simulations and closed-form solutions for two classes of models with

independent private values. Assuming that both bidders share the same anchor

(truthful or uniform) and the same depth of reasoning (either depth one or

depth two), they show that for some value distributions the optimal reserve

price can be lower than Myerson’s equilibrium reserve price, while it will be

higher for other distributions. The seller can sometimes pick a reserve price

that will give her a larger expected revenue than the maximal equilibrium

profit, provided the likelihood of having two level-1 bidders with a uniform

anchors is high enough. In that sense, Myerson’s revenue equivalence result

may break down. Finally, Crawford et al. design an ‘exotic auction’ that

guarantees a possibly arbitrary high revenue when both bidders’ depths of

reasoning are odd, and a zero revenue otherwise. The concerns they express

when discussing the realism of this mechanism and its potential for success

share some common themes with the word of caution we give in Subsection

6.3.

Crawford (2016) pursues a related analysis in the case of bilateral trading

with uniform anchors. He shows how Myerson and Satterthwaite’s (1983)

techniques to characterize incentive efficient mechanisms extend to the case of

direct mechanisms where telling the truth is compatible with level-k behavior,

provided the mechanism designer knows the depth of reasoning of both the

buyer and the seller. Without that knowledge, getting truth-telling for all

depths of reasoning requires using a random posted price. However, Crawford

also shows how mechanisms that guarantee truth-telling are unduly restrictive,

and discusses the relative performance of double auctions with reserve prices
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in some examples with uniform values.

The present paper contrasts with this body of work in multiple ways.

First, we tackle the question of mechanism design in a general framework,

that includes the problems discussed above as particular cases. Second, we

consider larger classes of level-0 anchors. Third, following the tradition of

implementation theory, we look for mechanisms that deliver the right outcome

independently of the combination of depths of reasoning. Papers by Crawford

and co-authors elegantly illustrate how social choice functions that are not

Bayesian incentive compatible can be level-k implementable in auctions and

simple trading settings but, as we argue later, achieving this requires either

(a) the assumption that all players are homogeneous in their depths of reason-

ing (see Example 1) or (b) implementing different social choice functions at

different depths (as in the ‘exotic auction’ of Crawford et al. mentioned above

and Example 1). While the assumption in (a) is questionable on grounds of

robustness, implementing different social choice functions at different depths

suggests a new direction for mechanism design theory. But we ought to tread

that path with caution because discrimination based on depths of reasoning

lacks normative justification (since depths do not determine preferences) and

may not be optimal without precise knowledge of the distribution of depths of

reasoning. In contrast, our results apply independently of the pool of (inex-

perienced) subjects the mechanism designer faces. Conclusions one can reach

regarding achievable profits, for instance, do not hold in expectation over pos-

sible depths of reasoning, but hold instead regardless of their distribution.

This prevents incurring potentially serious losses, or missing one’s social goal,

from holding incorrect beliefs regarding participants’ depths of reasoning.

While this paper shows how bounded depths of reasoning and equilibrium

logic can entail remarkably similar restrictions on social choice functions when

it comes to their implementability, they can also vary greatly in other dimen-

sions. If one insists on robustness to small modeling mistakes, for instance,

Bayesian Nash implementation becomes very restrictive (requiring a strong

form of Maskin monotonicity beyond incentive compatibility; see Oury and

Tercieux (2012)). However, as shown in a companion paper (see de Clippel et
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al. (2015)), continuous implementation with bounded levels of reasoning relies

only on the continuity of the social choice function beyond SIRBIC.

Our notion of implementation also shares some commonality with ratio-

nalizable full implementation, in particular the iterative construction rooted

in best responses that can accommodate a wide variety of reasonings and be-

haviors. It is less demanding, though, as individuals’ depth of reasoning is

bounded and behavior at cognitive state of depth 0 is fixed. Bergemann et

al. (2011) study rationalizable implementation of social choice functions, and

Kunimoto and Serrano (2016) consider correspondences. The diverging con-

clusions of these two papers, in terms of the permissiveness of the results,

should bring a word of caution. Having restricted attention in this paper to

social choice functions as a natural first step, we find it an interesting research

agenda to investigate set-valued rules next, and to figure out in particular

whether implementation can be significantly more permissive when behavior

is better described via level-k reasoning than via Bayesian Nash equilibrium

(see Example 2 below for an illustration). In a related paper concurrent to

de Clippel et al. (2015), Saran (2016) investigates the impact that an upper-

bound on depths of reasoning has on the rationalizable implementation of

single-valued social choice functions, this time under complete information. In

this case, the desired outcome must obtain for all anchors, which is naturally

very demanding (requiring for instance strategy-proofness and ‘strong non-

bossiness’ in the case of an ‘independent domain of preferences’, along with a

strong notion of monotonicity, more generally).

2 Framework

A social planner/mechanism designer wishes to select an alternative from a

set X. Her decision impacts the satisfaction of individuals in a finite set I.

Unfortunately, she does not know their preferences nor does she know their

level of cognitive sophistication. We discuss the more standard aspects of the

framework in the current section, and postpone our treatment of bounded

rationality, central to our work, to the next section.
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In order to capture general problems of incomplete information, for each

individual i, we introduce a set Ti of types, with the interpretation that each

individual knows his own type, but not the types of others.5 Beliefs are de-

termined by Bayes’ rule using a common prior p defined over T =
∏

i∈I Ti.

Thus, when individual i’s type is ti, her belief regarding other individuals’

types is given by the conditional distribution p(·|ti). We assume throughout

the paper that the marginal probability distribution pi over Ti has full support

for all individuals i. This assumption is made only for notational convenience,

as results extend otherwise by dropping types with zero probability. An indi-

vidual i’s preference is of the expected utility form, using a Bernoulli utility

function ui : X×T → R. With a slight abuse of notation, we will write ui(`, t)

to denote the expected utility of a lottery ` ∈ ∆X, where ∆X is the set of

probability distributions over X.

The planner’s objective is to implement a social choice function f : T →
∆X. To achieve this goal, she constructs a mechanism, which is a function

µ : M1×· · ·×MI → ∆X, whereMi is the set of messages available to individual

i. A mechanism is direct if Mi = Ti, for all i. A strategy of individual i is

a function σi : Ti → ∆Mi, where ∆Mi is the set of probability distributions

over Mi (of course, a player’s strategy will depend on her depth of reasoning,

as discussed below). A strategy profile σ and type profile t induce a lottery

µ(σ(t)) over X.6

For any social choice function f , say that an individual i is irrelevant for

f if f(ti, t−i) = f(t′i, t−i), for all ti, t
′
i ∈ Ti and all t−i ∈ T−i. Thus i’s type

matters under no circumstance when i is irrelevant. Individuals who are not

irrelevant are called relevant. Social choice functions in this paper are assumed

to treat all individuals as relevant. This is for notational convenience only, as

all results extend to the problems with irrelevant individuals as well, simply

by having the mechanism designer overlook their reports in mechanisms.

5We reserve the term “type” to describe an individual’s beliefs about the payoff state,
as well as beliefs about such beliefs. Since an individual’s depth of reasoning impacts her
behavior but not her preferences, we do not include the depth of reasoning in the description
of types.

6Formally, for any Borel subset B of X, µ(σ(t))[B] =
∫
m
µ(m)[B]dσ(t).
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We conclude the section with several technical observations. Throughout

the paper, it is assumed that the sets and functions considered have the right

structure to ensure that expected utility is well-defined. Formally, the set

of alternatives, and the sets of types and messages for each individual are

separable metrizable spaces endowed with the Borel sigma algebra, product

sets are endowed with the product topology, the Bernoulli utility functions

are continuous and bounded, and social choice functions, mechanisms, and

strategies are measurable functions.

3 Level-k Implementation

Together with types, beliefs, and utility functions, a mechanism µ defines a

Bayesian game. To discuss implementation, we need to introduce a theory

of how people play Bayesian games. We present our results in this paper

for the level-k model. In the remark below, we comment on how our results

can be extended to other alternative models of choice with bounded depth of

reasoning.

In order to describe choices, we begin by introducing behavioral anchors,

which describe how a given individual would instinctively play the mechanism,

as a gut reaction without any rational deliberation. Formally, individual i’s

behavioral anchor αi is a strategy that associates to each type ti a probability

distribution over Mi, i.e., a mapping αi : Ti → ∆Mi, which, therefore, is

mechanism-contingent. Profiles of such anchors will be denoted α = (αi)i∈I .

We remark that, at this point, the behavioral anchors are completely arbitrary,

and they may differ across agents.

The set of strategies that are level-1 consistent for an individual is then

the set of her best responses against the other individuals’ behavioral an-

chors, that is, S1
i (µ|α) is the set of strategies σi such that σi(ti) maximizes∫

t−i
ui(µ(mi, α−i(t−i)), t)dp(t−i|ti) over mi ∈Mi. By induction, for each k ≥ 1,

the set of strategies that are level-(k + 1) consistent for an individual is the

set of her best responses against a strategy profile that is level-k consistent for

the other individuals, that is, Sk+1
i (µ|α) is the set of strategies σi such that
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σi(ti) maximizes
∫
t−i
ui(µ(mi, σ−i(t−i)), t)dp(t−i|ti), for some σ−i ∈ Sk

−i(µ|α).

The index k is called an individual’s depth of reasoning.

Remark 1. We present our results under the assumption that individuals see

others’ depths of reasoning as exactly one level below theirs. While this is one

of the standard specifications, one can certainly envision more general scenar-

ios. Using simple induction arguments, all our results can easily be adapted

to a wide class of theories where individuals see others as less sophisticated

than themselves. This would include, for instance, all the theories described

through the language of cognitive hierarchies (Strzalecki (2014)), which sub-

sumes earlier models by Stahl (1993), Stahl and Wilson (1994, 1995), and

Camerer et al. (2004) among others. �

It has been argued that, for many subjects in the lab, their depths of

reasoning are probably rather small. At the same time, such depths vary

from individual to individual, and, even within a person, they may vary from

mechanism to mechanism. It is currently not well understood how one could

identify or impact individuals’ depth of reasoning. Therefore, we do not fix

the designer’s beliefs about the distribution of depths of reasoning among the

individuals. Instead, we introduce an upper bound K ≥ 2 on the individuals’

depths of reasoning, and assume that the mechanism designer thinks that all

combinations of depths between 1 and K are in principle possible. Our results

are robust to specific assumptions regarding the distribution of depths, as

long as the upper bound K is larger or equal to 2 and the distribution assigns

positive probability on all profiles of depths in {1, . . . , K}I .7 Taking K = 1

would mean that all participants have a depth of reasoning at most equal to

1, which seems rather implausible. Importantly, not being able to rule out

the presence of as little as two levels of reasoning guarantees our conclusions,

which also remain true in the presence of individuals with higher depths of

reasoning.

7In fact, even weaker assumptions on the distribution of depths suffice for our results. For
instance, the general necessary condition in Theorem 1 holds as long as for each individual
i, the distribution of depths supports a profile (ki, k−i) ∈ {1, . . . ,K}I such that ki ≥ 2 and
kj = ki − 1 for all j 6= i.
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The mechanism µ implements up to level-K the social choice function

f given the behavioral anchors α if (i) Ski
i (µ|α) is nonempty, for all i and

1 ≤ ki ≤ K, and (ii) f = µ ◦ σ, for all strategy profiles σ such that, for each

i, σi ∈ Ski
i (µ|α) with 1 ≤ ki ≤ K. Part (ii) is the main restriction, requiring

that the desired outcome prevails at all type profiles and independently of the

strategies individuals follow, as long as they are consistent with the theory

of level-k reasoning for some depth of reasoning no greater than K. Part (i)

rules out cases where (ii) is met only because of the absence of strategy profiles

consistent with level-k reasoning: best responses might not exist, for instance,

in discontinuous mechanisms or when the message space is open.

We do not require implementability for ki = 0. First, we think of all

individuals as being minimally rational in the sense of playing a best response

to some belief. In addition, this exclusion causes little loss of generality: the

necessary condition for implementability derived in the next section, and the

sufficient condition under truthful anchors derived in Section 5 hold when

including ki = 0 in the definition as well. Intuitively, the planner accepts

level-0 agents as a way to capture individuals’ beliefs regarding others’ gut

feelings towards the mechanism, and hence, does not see herself as trying to

affect those.8 The interesting problem of how to suggest or modify behavioral

anchors might be of importance in a new direction of mechanism design, but

it is beyond our scope here.

4 A General Level-k Revelation Principle

To understand the limits of level-k implementation, we start by showing how

a slight strengthening of Bayesian incentive compatibility is necessary as soon

as the social choice function is level-k implementable for some arbitrary be-

havioral anchors in any mechanism. This has two related and surprising impli-

cations. First, level-k reasoning does not free us from incentive compatibility

8If level-0 is not just a belief about others but, in fact, corresponds to actual unsophis-
ticated behavior, then until we better understand how to affect it, we have to resign to the
fact that actions at level-0 will in general not generate the social choice outcome.
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constraints, even if the mechanism designer had the ability to choose the an-

chors in each mechanism. Second, incentive compatibility is a general neces-

sary condition that will hold when studying level-k implementation, regardless

of the regularity restrictions one is willing to place on behavioral anchors. Of

course, such restrictions may generate supplementary necessary conditions, or

turn necessary conditions into also sufficient, as we will see in later sections.

Say that a social choice function f is implementable up to level-K for some

anchors if there exists a mechanism µ and some behavioral anchors α for µ

such that µ implements up to level-K the social choice function f given α.

The next result may, at first glance, come as a surprise, as it shows that

only the standard Bayesian incentive compatible social choice functions are

implementable in this sense.

In fact, a slightly stronger property is necessary, with the incentive con-

straints being strict in some cases. There might be circumstances under which

the mechanism designer wishes to implement a social choice function that is

insensitive to some changes of an individual’s type. For instance, two types

might differ only in higher-order beliefs, which may not matter to the mecha-

nism designer for the problem at hand. For level-k implementation, incentive

constraints need to be strict whenever comparing types for which the social

choice function is responsive. Formally, say that f is insensitive when chang-

ing i’s type from ti to t′i, denoted by ti ∼f
i t
′
i, if f(ti, t−i) = f(t′i, t−i) for all t−i.

Otherwise, we say that f is responsive to ti versus t′i.

Definition 1. The social choice function f is strictly-if-responsive Bayesian

incentive compatible (SIRBIC) whenever (i) it is Bayesian incentive compati-

ble, that is,∫
t−i∈T−i

ui(f(t), t)dp(t−i|ti) ≥
∫
t−i∈T−i

ui(f(t′i, t−i), t)dp(t−i|ti), (1)

for all ti, t
′
i, and (ii) the inequality holds strictly when the social choice function

is responsive to ti versus t′i.

Our main result follows:

13



Theorem 1. Suppose K ≥ 2. If a social choice function is implementable up

to level-K for some arbitrary anchors, then it satisfies SIRBIC.

Proof. Let µ be a mechanism that implements up to level-K the social choice

function f given some behavioral anchors α = (αi)i∈I . For each i, let σ2
i be an

element of S2
i (µ|α) (which is nonempty by definition of implementation up to

level K since K ≥ 2).

We start by showing that f is Bayesian incentive compatible. Consider

two types ti and t′i in Ti. As σ2
i ∈ S2

i (µ|α), it follows that σ2
i is a best response

for i against some σ1
−i ∈ S1

i (µ|α). We then have:∫
t−i∈T−i

ui(f(t), t)dp(t−i|ti) =

∫
t−i∈T−i

ui(µ(σ2
i (ti), σ

1
−i(t−i)), t)dp(t−i|ti)

≥
∫
t−i∈T−i

ui(µ(σ2
i (t′i), σ

1
−i(t−i)), t)dp(t−i|ti)

=

∫
t−i∈T−i

ui(f(t′i, t−i), t)dp(t−i|ti),

where the two equalities follow from the fact that µ implements f up to level-

K given the anchors α, and the inequality follows from the fact that σ2
i (ti) is

one of ti’s best responses against σ1
−i.

We establish the required strict inequalities with a reasoning by contrapo-

sition. Suppose that the incentive constraint for type ti pretending to be type

t′i is binding. Then, the weak inequality in the previous paragraph must hold

with equality, and the strategy τi belongs to S2
i (µ|α), where τi differs from

σ2
i only in that ti picks σ2

i (t′i).
9 By level-k implementation, it must be that

f(ti, t−i) = µ(τi(ti), σ
1
−i(t−i)) for all t−i. This is equal to µ(σ2

i (t′i), σ
1
−i(t−i)),

by definition of τi, and to f(t′i, t−i), by definition of level-k implementation.

Hence, the social choice function must be insensitive when changing i’s type

from ti to t′i, which concludes the proof.

The reader is referred to the Introduction for an intuitive outline of the

main part of the previous proof. We next present two examples, which are

9τi is measurable as singletons in Ti are measurable because Ti is separable metrizable,
and hence also Hausdorff.
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illustrative of the power and limitations of our level-k revelation principle.

First, our Theorem 1 contrasts with some more permissive results found in

Crawford (2016). The following example from Crawford (2016) highlights the

reasons underlying our contrasting results.

Example 1. Consider the bilateral trading problem with risk-neutral traders

and one indivisible object. The buyer’s value v and the seller’s cost c are

distributed uniformly on [0, 1]. They trade using the 1
2
-double auction. That

is, the buyer and seller simultaneously submit respectively a bid and an ask.

They trade the object if and only if the buyer’s bid is at least equal to the

seller’s ask. If they do trade, then the trading price equals the average of the

bid and ask. In case of trade, the buyer’s payoff is equal to her value minus

the price while the seller’s payoff is equal to the price minus her cost. Each

trader obtains zero whenever there is no trade.

Crawford (2016) assumes that the level-0 behavioral anchor is uniform

random over [0, 1]. Then there is a unique level-1 consistent strategy, which

equals bidding 2
3
v for the level-1 buyer and asking 2

3
c+ 1

3
for the level-1 seller.

This pair of strategies generates an outcome (which can be viewed as a social

choice function) that is not incentive compatible. For instance, the buyer of

value 0.5 expects a zero payoff under this outcome, and would be better off

if she imitates the buyer of value 0.75. Thus, if all individuals are exclusively

level-1 (more generally, homogeneous in their levels), then we can implement

social choice functions that are not incentive compatible. Theorem 1 shows

that if the designer has any doubt about this assumption of homogeneity, in

that she cannot rule out that individuals may be of either level-1 or 2 (or

possibly others above), then she is bound by the classic Bayesian incentive

compatibility constraints. Such agnosticism is the usual norm in a mechanism

design approach.

Let us then consider the situation where the individuals have heterogeneous

levels. For instance, suppose traders could be either level-1 or level-2. Given

the level-1 consistent strategies identified above, the following strategy is level-
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2 consistent for the buyer

2
3
v + 1

9
, if v ≥ 1

3

v, if v < 1
3

.

while the following strategy is level-2 consistent for the seller

2
3
c+ 2

9
, if c ≤ 2

3

c, if c > 2
3
.

When paired up against one another, these level-2 consistent strategies

result in an outcome that is not incentive compatible. For example, a buyer

of valuation v = 1 bids 7/9, and hence, trades only with sellers with cost

parameter c ∈ [0, 7/9]. Her expected payoff would be strictly improved by

imitating a buyer with valuation v = 5/6, bidding 2/3 instead, making her

trade only with sellers whose cost parameter c ∈ [0, 2/3], but at a lower price.

This observation is consistent with our earlier claim that Bayesian incentive

compatibility is not necessary when players’ levels are homogeneous. But now,

the buyer’s (seller’s) level-2 consistent strategy when paired with the seller’s

(buyer’s) level-1 consistent strategy results in an outcome that is not incentive

compatible either. So how are we able to get around incentive compatibility

even though we have heterogeneous levels?

The key is that the four outcomes or social choice functions that are gen-

erated by the four pairs of buyer’s and seller’s levels are not equal to each

other. Thus, when there are heterogeneous levels of players, then one way –

and following Theorem 1– the only way, to get around incentive compatibility

constraints is to implement different social choice functions for different levels

of reasoning.10 While such a differential treatment might be questionable on

normative grounds (because levels of reasoning do not determine individual

preferences) and may not be optimal without specific knowledge of the distri-

bution of levels, the example clearly suggests a new direction for the theory,

10To be precise, this is true when the designer wants to implement social choice functions.
As shown in Example 2, it is possible to get around incentive compatibility if the designer
implements a social choice set.
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in which an expanded notion of a type may include cognitive sophistication,

thereby making the social choice function contingent on such considerations.�

The second example has implications that may take us far afield from the

current paper. It shows that Bayesian incentive compatibility ceases to be

necessary if the designer wants to implement a social choice set.11

Example 2. Suppose there are two individuals, and we wish to implement

a social choice set {f, f ′} such that the social choice function f is strictly

Bayesian incentive compatible (strictly BIC) but f ′ is not BIC. Moreover,

suppose that for both individuals, f ′ is uniformly worse than f . That is, for

all i and t,

ui(f(t), t) > max
`∈{f ′(t′):t′∈T}

ui(`, t).

Consider the following mechanism µ: Each individual announces her type

and one social choice function in {f, f ′}. Let t be the types reported by the

individuals. If at least one individual announces f , then the outcome is f(t)

whereas if both individuals announce f ′, then the outcome is f ′(t).

Suppose the behavioral anchor α is such that level-0 announces her true

type and f . Then, given that f is strictly BIC, announcing one’s true type

and either f or f ′ is a level-1 consistent strategy. Since f ′ is uniformly worse

than f , if a level-2 individual believes that the level-1 of the other individual

will report her true type and announce f ′, the best response for the level-2

individual is to report her true type and announce f . If a level-2 individual

believes that the level-1 of the other individual will report her true type and

announce f , the best response for the level-2 individual is to report her true

type and announce either f or f ′. Thus, announcing ones true type and either

f or f ′ is a level-2 consistent strategy. Iterating this argument, we obtain that

announcing one’s true type and either f or f ′ is a level-k consistent strategy

for all k ≥ 1.

11Note that a social choice set instead of a social choice correspondence is the appropriate
notion of set-valued rules in case of incomplete information.

17



Then, it follows that, irrespective of individuals’ levels ki, kj ≥ 1,

{µ ◦ σ : σi ∈ Ski
i (µ|α), σj ∈ S

kj
j (µ|α)} = {f, f ′}.

Thus, the above mechanism implements the social choice set at all combina-

tions of levels, and yet f ′ is not BIC. �

5 Direct Mechanisms and Truthful Anchors

After having obtained a general level-k revelation principle for arbitrary mech-

anisms and arbitrary behavioral anchors, the rest of the paper proceeds by

investigating specific anchors and classes of mechanisms. Since level-k rea-

soning has significantly different predictions than Nash equilibrium in many

games, one might have thought that level-k implementation would allow im-

plementing social choice functions that are not weakly Nash implementable.

We already saw in the previous section that this intuition is not correct. One

may wonder now if level-k implementation is not in fact much more restrictive

than weak Nash implementation. This may depend on the stand one takes

regarding behavioral anchors in the implementing mechanisms, but our next

results show that there are important scenarios where SIRBIC is also sufficient

for level-k implementation.

In particular, this section uses truthful anchors in direct mechanisms. Ex-

perimental evidence offers support to their use.12 This is consistent with the

well-known argument that truth-telling may be a focal or salient point. Also,

even if the mechanism designer might not be able to nudge people to consider

any anchor she would find convenient, making truth-telling salient enough to

serve as the anchor may be easier. We now show that SIRBIC is sufficient for

level-k implementation via a direct mechanism with truthful anchors. We first

state a lemma whose easy proof is left to the reader.

12See, for example, Crawford (2003), Crawford and Iriberri (2007), Cai and Wang (2006),
and Wang et al. (2010).
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Lemma 1. Let f be a social choice function. Then f(t) = f(t′) for any type

profiles t and t′ such that ti ∼f
i t
′
i for all i ∈ I.

Theorem 2. If f satisfies SIRBIC, then for all K ≥ 1, f is implementable

up to level-K by a direct mechanism with truthful anchors.

Proof. The result can be proved by using f itself as a direct mechanism. Let

α∗ denote the profile of truthful anchors. We begin with level-1 individuals.

By Bayesian incentive compatibility, reporting ti is a best response for i of

type ti against the truthful anchors for the other individuals. Reporting other

types may be best responses as well, but only if the corresponding incentive

constraint is binding. By SIRBIC, σ1
i is a best response for i against the

truthful anchors for the other individuals if and only if σ1
i (ti) ∼f

i ti, for all ti.

This characterizes S1
i (f |α∗). Since this holds for every i, a simple application

of Lemma 1 implies that f = f ◦ σ for every σ ∈ S1(f |α∗).
Consider now a level-2 individual i, who expects others to play σ1

−i ∈
S1
−i(f |α∗). Her expected utility from reporting type t′i when of type ti is∫

t−i∈T−i

ui(f(t′i, σ
1
−i(t−i)), t)dp(t−i|ti).

By Lemma 1, this is equal to∫
t−i∈T−i

ui(f(t′i, t−i), t)dp(t−i|ti),

which is the same as what ti would get by such misreporting if others were

truthful. Thus S2
i (f |α∗) = S1

i (f |α∗). In fact, using induction and the same

argument, for all k ≥ 2, Sk
i (f |α∗) = S1

i (f |α∗). Lemma 1 then implies that,

for all K ≥ 1, the direct mechanism up to level-K implements f with truthful

anchors.

We briefly observe that, if anchors are not truthful in a direct mechanism,

then SIRBIC is sufficient for implementation up to level-K in the special case

of independent private values when the type distribution coincides with the

distribution of messages generated by the level-0 anchor (for example, when
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types are distributed uniformly and the level-0 anchor in the direct mech-

anism is the uniform distribution). Beyond this special case, SIRBIC and

strict level-1 incentive compatibility (i.e., that truth-telling is the unique best

reply to level-0) suffice for implementation up to level-K. Level-1 incentive

compatibility also features in Crawford (2016), for instance.

6 Uniform Anchors and Beyond in General

Mechanisms

Anchors α in a mechanism µ : M1 × · · · × MI → ∆X are uniform if αi is

the uniform probability distribution over Mi, for each individual i. While

often used in the literature on level-k reasoning, they are peculiar in several

respects. For instance, uniform anchors have full support. By contrast, it is

plausible that, even without rational deliberation, bidders would not bid below

the reserve price when they value the good more. Uniform anchors also are

type-independent. Instead, an individual’s gut reaction may be biased towards

the truth.

Fortunately, the sufficiency results we derive in this section are robust to

the extent that they hold for a wide class of anchors beyond the uniform case

(see, however, the word of caution in Subsection 6.3). Assuming that Mi

contains a continuum of messages for each i, the anchors α are atomless if the

distribution αi(ti) of messages contains no atom, for each ti and each i. To be

clear, we will show how, for most SIRBIC social choice functions, there is often

a mechanism that level-k implements it for all profiles of atomless anchors. As

we will see, that same mechanism will also succeed should anchors be truthful

instead.

6.1 Independent Private Values

Individuals have private values if for all i, individual i’s Bernoulli utility func-

tion depends only on i’s type: ui(x, t) = ui(x, ti), for each t and each i. Types

are distributed independently if the prior can be written as the product of its
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marginals: p =
∏

i pi, where pi denotes the marginal probability distribution

on Ti.

Consider now the following mechanism µf . Each individual reports a type

along with a real number between −1 and 1. Say mi = (ti, zi) ∈ Ti × [−1, 1],

for each i. Based on these reports, the designer applies f to a profile of types

selected as follows: for each individual i, if zi = kzj for all j 6= i and some

integer k, then the designer uses the reported ti; otherwise, she uses a type

picked at random according to the density pi.

Theorem 3. Consider an environment with independent private values. If a

continuous social choice function f satisfies SIRBIC, then for all K ≥ 1, µf

implements f up to level-K given atomless anchors.

Proof. Fix atomless anchors α. We claim that S1
i (µf |α) is the set of strategies

for which individual i of type ti sends a message (τi, 0) such that τi ∼f
i ti.

Pick the level-1 individual i. She believes that all j 6= i are level-0 players

playing an atomless strategy αj. Therefore, the probability that the realized

value of zj is equal to kzi for any zi is equal to zero. Hence, from the point of

view of the level-1 individual i, the mechanism designer will almost surely use

for j a type picked at random according to the density pj. In addition, the

level-1 individual i expects with probability 1 to have the mechanism designer

overlook his type report and instead use a type drawn according to pi when

reporting a nonzero zi (this is because the level-0 of all j 6= i play atomless

strategies, and so for any nonzero zi, the probability that the realized value

of zj is such that zi = kzj is equal to zero). In contrast, reporting zi = 0

guarantees that the mechanism will use i’s reported ti because then zi = 0×zj
for all j 6= i and zj. To summarize, i expects the lottery∫

t∈T
f(t)dp(t). (2)

when sending a message with a nonzero zi, and expects the lottery∫
t−i∈T−i

f(ti, t−i)dp−i(t−i). (3)
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when sending a message (ti, 0).

Suppose now that individual i’s type is t∗i . Her expected utility under

lottery (3) is

ui

(∫
t−i∈T−i

f(ti, t−i)dp−i(t−i), t
∗
i

)
=

∫
t−i∈T−i

ui(f(ti, t−i), t
∗
i )dp−i(t−i).

By SIRBIC, we have∫
t−i∈T−i

ui(f(t∗i , t−i), t
∗
i )dp−i(t−i) ≥

∫
t−i∈T−i

ui(f(ti, t−i), t
∗
i )dp−i(t−i), (4)

for all ti, with a strict inequality for all ti such that ti 6∼f
i t
∗
i .

Since f is continuous and there exists ti such that ti 6∼f
i t
∗
i (because indi-

vidual i is relevant for f), there is a positive pi-measure of types ti for which

inequality (4) holds strictly. Using this observation, we keep a strict inequality

when integrating (4) over ti:∫
t−i∈T−i

ui(f(t∗i , t−i), t
∗
i )dp−i(t−i) >

∫
t∈T

ui(f(t), t∗i )dp(t),

which is equal to the expected utility of lottery (2). Thus, sending a type along

with a nonzero number is never a best response against atomless anchors, since

sending (t∗i , 0) is strictly better.

Among reports that include a zero, truthfully reporting one’s type is a

best response, by (4), and so is any type ti ∼f
i t
∗
i . Reporting types ti 6∼f

i t
∗
i ,

however, is strictly inferior. Thus we have proved, as claimed, that S1
i (µf |α) is

the set of strategies such that i of type ti picks a message (τi, 0) with τi ∼f
i ti.

We now show that Sk
i (µf |α) = S1

i (µf |α), for all i and all k ≥ 2. This will

conclude the proof that for all K ≥ 1, µf up to level-K implements f with

atomless anchors, thanks to Lemma 1. Level-2 of individual i believes that

level-1 of any individual j 6= i plays according to strategies in S1
j (µf |α). Since

level-1 of j sends a zero along with her type report, the designer will accept j’s

type report. As already argued in the proof of Theorem 2, Lemma 1 implies

that we can assume without loss of generality that individual j’s type report is
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truthful (because nontruthful reports result in the same outcome by definition

of ∼f
i ). Since level-2 of individual i believes that all others are reporting zero,

she expects the lottery (2) if she sends a nonzero number along with her type

report, and lottery (3) if she sends zero along with a type report ti. These are

the same lotteries as for the level-1 of individual i, but for a different reason,

namely because others are now expected to send a truthful type report with

a zero. The comparison of these two lotteries remains unchanged, and we get

S2
i (µf |α) = S1

i (µf |α). The argument extends trivially to any higher depth of

reasoning k > 2.

The mechanism µf succeeds by effectively separating individuals’ beliefs

when having a depth of reasoning 1 or 2+. Under atomless anchors, a level-1

individual expects that the mechanism designer overlooks others’ type reports.

By using instead arbitrary types drawn according to the true empirical distri-

bution of types, this individual faces the same expected outcome under f as

if others where truth-telling.13 A level 2+ individual expects that others will

submit a zero, in which case the mechanism designer does take reported types

into account, but also that type reports are truthful.

Remark 2. In many classic implementation problems, including auction and

bilateral trade problems (see Crawford and Iriberri (2007), Crawford et al.

(2009), and Crawford (2016)), type sets are intervals. In such cases, any

continuous SIRBIC social choice function f can be level-k implemented given

atomless anchors by a direct mechanism (having Mi = Ti). To construct a

mechanism achieving this, observe that for each i there exists a bijection bi

between Ti and a subset Ai ⊆ Ti of measure zero. An analogue to Theorem 3

holds when using the mechanism µ̂f obtained by applying f to types selected

as follows: for each individual i, if ti ∈ Ai, then the designer uses the type

b−1i (ti); otherwise, she uses a type picked at random according to the density

pi.

Remark 3. In mechanism µf , we do not need the level-0 anchors to be atom-

13In contrast, using f as a direct mechanism would typically fail at this stage since pi
need not match the anchor αi.
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less over the type space. In particular, suppose the level-0 reports her type

truthfully but picks a number in [−1, 1] according to some atomless distribu-

tion. It is easy to check that µf also level-k implements f with such anchors

that are truthful over the type space. Similarly, in the context of the previ-

ous remark, the direct mechanism µ̂f also level-k implements f with truthful

anchors.

6.2 General Interdependent Values

Beyond the case of independent private values, level-k implementation given

uniform anchors entails a restriction in addition to SIRBIC. The next example

provides a first intuition.

Example 3. Suppose that X = {x, y}, T1 = T2 = {a, b}, p is uniform, and

there is pure common interest, with the following dichotomous Bernoulli utility

functions:

ui(x, t) = 1 and ui(y, t) = 0 for t = (a, a) or (b, b)

ui(y, t) = 1 and ui(x, t) = 0 for t = (a, b) or (b, a)

The Pareto social choice function that picks x if (a, a) or (b, b), and y otherwise,

satisfies SIRBIC. Using it as a direct mechanism does not allow to level-k

implement it given uniform anchors, as a level-1 individual expects the same

lottery (x or y with equal probability) when reporting a or b. One might

conjecture that the Pareto social choice function could be implemented via

an indirect mechanism. This is not the case, though, as we will show after

the next theorem. In fact, the implementability issue in this example does

not only arise with uniform anchors, but instead as soon as anchors are type-

independent.

Individual i’s (interim) preference over state-independent or constant lot-

teries, i.e., over ∆(X), when of type ti is represented by the following utility
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function:

Ui(`|ti) =

∫
t−i∈T−i

ui(`, t)dp(t−i|ti).

The next condition requires the social choice function to be responsive to ti

versus t′i only if the two types define different preferences.

Definition 2. The social choice function f is responsive only when preferences

differ if ti 6∼f
i t
′
i implies that individual i has different interim preferences over

constant lotteries at ti, t
′
i, that is, there do not exist λ > 0 and β such that

Ui(·|ti) = λUi(·|t′i) + β.

Remark 4. This is a stronger version of a condition that first appeared under

the name of measurability in Abreu and Matsushima’s (1992) paper on virtual

implementation in iteratively undominated strategies under incomplete infor-

mation. A-M measurability is defined with respect to a partition of the type

space that results after an iterative process of type separation, as a function

of their interim preferences over increasingly enlarged classes of lotteries. Our

condition corresponds to the first step of that iterative process.

When the mechanism designer is bound to type-independent (e.g., uniform)

anchors, implementability requires the social choice function to be responsive

only when preferences differ in addition to SIRBIC.14

Theorem 4. If a social choice function f is implementable up to level-K given

type-independent anchors, then f is responsive only when preferences differ.

Proof. Let µ be a mechanism that implements f up to level-K given type

independent anchors α. For each individual i, let σ1
i be some level-1 consistent

strategy, that is, σ1
i ∈ S1

i (µ|α). For each type ti, let `i(ti) be the lottery over

X that a level-1 individual i expects to occur when playing σ1
i . Formally,

`i(ti) =

∫
m−i∈M−i

µ(σ1
i (ti),m−i)dα−i(m−i).

14This result does not contradict the sufficiency result in Theorem 3. Indeed, it is not
difficult to check that under independent private values, any social choice function that
satisfies SIRBIC must be responsive only when preferences differ. Example 3 shows how
this implication does not hold more generally.
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Suppose that individual i’s interim preference over constant lotteries is

the same when of type ti as when of t′i. Lottery `i(t
′
i) is the best lottery

that level-1 individual i can get by reporting a message in the mechanism

when of type t′i. Hence it is also the best lottery she can get by reporting

a message in the mechanism when of type ti. The strategy τi that coincides

with σ1
i except that τi(ti) = τi(t

′
i) = σ1

i (t′i) then also belongs to S1
i (µ|α). By

definition of implementability, f(ti, t−i) = µ(τi(ti), σ
1
−i(t−i)) and f(t′i, t−i) =

µ(τi(t
′
i), σ

1
−i(t−i)) for all t−i. But since τi picks the same message for ti and t′i,

we have ti ∼f
i t
′
i. Hence, f is responsive only when preferences differ.

Returning to Example 3, note how both types of each agent have identical

interim preferences over constant lotteries. Thus, being responsive only when

preferences differ would require that the social choice function be constant over

all states, and clearly, the Pareto function is not. Therefore, this function is

not level-k implementable given uniform or type-independent anchors.

Does level-k implementation with type-independent entail further restric-

tions beyond SIRBIC and beyond the responsiveness only when preferences

differ? In a supplementary appendix available online, we answer this question

in the negative. That is, we extend the technique used to prove Theorem 3,

and show that these two properties are sufficient in most problems.15

6.3 A Word of Caution

Assuming that anchors are uniform makes sense if individuals think that oth-

ers’ gut reaction to a game would be totally random. This is plausible, for

instance, if level-1 players see others as not paying attention to, or not under-

standing the rules of the mechanism. However, other anchors may be sensible

too.

It is preferable then to obtain sufficiency results that remain valid for a

wide set of anchors.16 We derived results, for instance, that remain valid

15The online appendix is available at https://goo.gl/Dse9AK.
16Social choice functions that are implementable in strictly dominant strategies will be

level-k implementable for all anchors. An issue, of course, is that few social choice functions
may be implementable in that sense.
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for any combination of atomless anchors (as well as truth-telling). While we

restricted attention to problems where any two individuals share the same

anchors regarding third parties, our sufficiency results easily extend to cases

with personalized anchors as well.

That being said, it is entirely possible that reporting zero (along with a

type) when participating in µf is salient enough that anchors would display

an atom at zero. But, of course, when f is implementable, µf is not the only

mechanism implementing it with atomless anchors. For instance, the proof of

Theorem 3 can be adapted to show that the following alternative mechanism

would work too: messages remain unchanged, but the mechanism designer

uses an individual i’s actual type report if and only if the real number he sent

along falls in a given finite subset A of [−1, 1]; otherwise she uses an arbitrary

type picked according to pi. In the spirit of framing effects, the set A can be

presented in different ways, e.g. as a list or as the set of solutions to some

equation.17

More generally, we conjecture that level-0 anchors might be mechanism-

specific. We see this paper as setting a benchmark for future advances. Progress

on this topic will likely come from the combination of empirical and theoretical

work. Mechanisms derived theoretically, such as those in this paper for a start,

should be tested empirically, and empirical lessons as to how anchors may vary

with the game being played and its description should inform theorists when

designing new mechanisms. Theorem 1 remains applicable, however, and thus

one should always keep in mind the restrictions imposed by SIRBIC.
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