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Abstract

A receiver wants to learn multidimensional information from a sender, but she

has capacity to verify only one dimension. The sender’s payoff depends on the belief

he induces, via an exogenously given monotone function. We show that by using

a randomized verification strategy, the receiver can learn the sender’s information

fully if the exogenous payoff function is submodular. If it is (strictly) supermod-

ular, then full learning is not possible. In a variant of the model that allows for

severe punishments when the sender is found to have lied, we can give a complete

characterization of when full learning is possible. Our full learning result does not

critically rely on perfect verifiability of one dimension: in an example with noisy

verification, the receiver’s ex-post perceived distribution of information converges

in distribution to the true value as the noise vanishes.
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1 Introduction

An HR manager is interviewing a job candidate to form an opinion about the candidate’s

qualities or skills. A prosecutor is interviewing a defendant to decide whether there is a

case that she could prosecute. An insurance company employee is evaluating a claim filed

by its client to decide if it is legitimate or fraudulent. All these cases can be thought of

as an interaction between a sender and a receiver of information, where the former tries

to impress the latter, while the latter tries to make a possibly precise inference about the

former’s private information.

This interaction is unlikely to be pure cheap talk. The HR manager can give the

job candidate a test, or can call the college that the candidate lists on his vita to verify

truthfulness of the claim. The prosecutor can compare the defendant’s statements with

evidence obtained otherwise. The insurance company employee can visit the client’s

property and inspect what was damaged or stolen. However, the verification might be

limited: the HR manager might be able to test only a few skills, the prosecutor might be

able to corroborate only some of the defendant’s claims, and the insurance company might

verify only some of the information to ensure speedy processing. To what extent does

this limited verification prevent the receiver from fully learning the sender’s information?

In this paper, we make a strong assumption on the limits to verification: the sender’s

type is multidimensional, and the receiver is only able to verify at most one dimension.

But the dimension she verifies can depend on the message that the sender sends. What

can she do in this context?

The following example previews our ideas.

Example 1. An IT firm is hiring a programmer, and wants to evaluate a job candidate on

two dimensions: math skills and coding skills. The candidate knows his skills x and y, but

from the firm’s perspective, they are i.i.d. uniform on [0, 1]. The candidate tries to impress

the firm by signaling that the sum of his two skills, x+ y, is as high as possible, because,

for example, this value is linked to the probability of being hired or to the expected salary.

If the firm is not able to verify either dimension, then clearly no useful information

about the total value x + y can be credibly transmitted in equilibrium. At the other

extreme, if the firm can test both skills, it can learn the candidate’s type perfectly. Our

question is what can happen if the firm can test just one skill.

Suppose first that the firm chooses in advance which skill to test. If it chooses math,

then it learns the value x precisely, but does not get any information about y. Conversely,

if it chooses coding, it learns y but gets no update on x.
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It is easy to see that the firm can improve by asking the candidate to choose which

test he would like to take. The candidate who is better at math (x > y) would then ask

to take the math test, and the candidate better at coding would ask for the coding test.

Then, after giving the math test to the candidate who chose it, the firm not only learns

x, but also some information on y, namely, that y is distributed on [0, x], and similarly

the firm that ends up giving the coding test to the candidate learns something about his

math skills. (Notice that it is incentive-compatible for the candidate to report his best

dimension: the firm’s posterior expectation of x+ y would be 3
2
x if he asks for the math

test and 3
2
y if he asks for the coding test, so indeed he prefers the former if and only if

x > y.)

Is there any way the firm can learn even more?

The answer may be a surprise: the firm can learn everything, by using a randomized

mechanism. This can be achieved as follows. The firm asks the candidate to report

p = x
x+y

, and then proceeds by giving the candidate the math test with probability p and

the coding test with probability 1 − p. If the candidate plays along, then the firm will

indeed achieve full learning: after giving the math test (which is possible only if p > 0)

and observing x, it would infer y as y = 1−p
p
x; similarly, after giving the coding test and

observing y, it would infer x as x = p
1−py. It therefore remains to verify that it is incentive

compatible for the candidate to report p = x
x+y

truthfully.

A candidate that reports p = x
x+y

truthfully makes the firm learn his true x + y. A

candidate that deviates and reports p̂ instead makes the firm believe that x̂+ y = x+ 1−p̂
p̂
x

if he gets the math test, and that x̂+ y = p̂
1−p̂y + y if he gets the coding test. Since he

gets the former with probability p̂ and the latter with probability 1 − p̂, in expectation

he makes the impression

p̂

(
x+

1− p̂
p̂

x

)
+ (1− p̂)

(
p̂

1− p̂
y + y

)
= x+ y.

This means that the candidate cannot gain by misreporting, and indeed the firm can learn

everything if it gives the candidate the freedom to choose the testing probabilities.

In what follows, we study how far the simple logic of this example generalizes. We

build a model with two economic agents, a sender (he) and a receiver (she), which we

can think of as a job candidate and an interviewer. The sender has multidimensional

private information (e.g., his skills) and can send a message to the receiver, who can

subsequently verify the value of one of the dimensions. In most of the paper we assume

this verification is perfect; in a final section we consider a case with noisy verification. We
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think of the receiver’s problem as one of mechanism design: she commits to a verification

rule so that equilibrium play in the resulting communication game will reveal as much

information about the private type as possible. We assume that while the receiver is free

to design the verification rule, she has no control over the subsequent (unmodeled) actions

that will generate payoffs for the sender. This assumption is natural: e.g., in the case of

an interviewer and a job candidate, the interviewer might be obliged to write a truthful

(according to her posterior belief) report about the job candidate to her supervisor, so

she may design a mechanism that selectively elicits only some information, but she cannot

manipulate the candidate’s payoffs in any other way. The candidate, in his turn, tries to

maximize the overall impression of the receiver (e.g., her posterior belief about the sum

of his skills).

The sender’s gain from convincing the receiver that his type is a is modeled by an

exogenous function V (a) (in the above example, this is the sum of coordinates). We can

think of this function as a reduced-form way of modeling the outcome of any subsequent

interaction between the sender and receiver. We study how the possibility or impossibility

of perfect learning depends on the function V (a). If V (a) is additively separable in the

coordinates, the example generalizes in a straightforward way. Moreover, the mechanism

is essentially unique. More generally, as long as V (a) is submodular, full learning is

possible, whereas if V (a) is strictly supermodular then it is impossible. In the particular

case of two dimensions, we can give a complete characterization of when full learning is

possible. We then consider a variant model where a sender who has been caught lying can

be punished as if his type were zero (e.g. the employer simply refuses to hire the candidate

if the test reveals that he lied). In this case, we can strengthen the full learning result

for submodular V by giving an explicit description of the mechanism (instead of just an

existence proof), and we can also give a full necessary and sufficient condition on V for

full learning to be possible. Finally, as a robustness check, we consider an example with

noisy verification. While full learning is not achievable with any nonzero amount of noise,

we show how it can be achieved in the limit as the level of noise goes to zero.

Our paper contributes to the large literature on strategic information transmission

and communication that starts with Crawford and Sobel (1982) and Holmström (1977),

and more specifically to transmission of multidimensional information (see Sobel, 2013,

for an extensive review of the literature on strategic communication). In the cheap talk

framework where no information is verifiable, Chakraborty and Harbaugh (2007) show

that some information, in particular, relative statements about the dimensions of interest,

may be transmitted. Chakraborty and Harbaugh (2010) further show that in the linear

case, information on all but one dimension (the “dimensions of agreement”) may be trans-
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mitted.1 In a similar setting but with multiple senders, Battaglini (2002) demonstrates

that full learning is possible for a generic set of parameters.2

The paper that is the most related to ours is Glazer and Rubinstein (2004), which

also studies a receiver (‘listener’) who is trying to elicit multidimensional information

from the sender (‘speaker’) and is able to verify at most one dimension.3 In that paper,

the receiver uses the information learnt to make a binary decision, e.g. whether to hire

the sender or not, and the sender has a constant preference over decisions, e.g. always

prefers to be hired. In our terms this corresponds to assuming that V can take two

values. The receiver wishes to minimize the probability of a mistake. The authors show

that the optimal mechanism exists and furthermore can be characterized as a solution

to a linear programming problem defined in the paper, and random mechanisms may

be necessary to achieve the optimum. Moreover, the ex-ante optimal mechanism has an

indirect implementation for which it is optimal for the receiver to follow through once

information is acquired. In contrast to their paper, we consider a broader range of payoffs

for the sender, but focus on the possibility of full learning, which is not discussed in Glazer

and Rubinstein (2004); in their setting, if full learning were possible, it would of course

be optimal.4

Our paper is also linked to the growing literature on mechanism design with costly

verification, started by Townsend (1979). Recent work in this line includes Kartik and

Tercieux (2012), which studies a general problem of implementation in the presence of

costly signals. Ben-Porath, Dekel, and Lipman (2014) consider the problem of optimal

allocation of an indivisible unit in an auction-type environment, where agents’ claims may

be verified at a cost. Deb and Stewart (2017) study the problem of adaptive testing where

the number and identity of tests depend on the information revealed by the agent.

1The reader may notice that our example above has a similar feature: one dimension out of two is
transmitted before any verification, and verification fills in the missing dimension. The analogy, however,
ends here. First, in the example, the sender’s report may actually transmit some information about the
sender’s overall quality (depending on the distribution of types), so the probability of getting a particular
test is by no means a “dimension of agreement.” Second, we show our results on full learning in a much
more general case than linear.

2Other papers highlighting the possibility of full learning with multiple senders include Ambrus and
Takahashi (2008) and Meyer, Moreno de Barreda, and Nafziger (2016). Ambrus and Lu (2014) show that
almost fully revealing cheap talk is possible when the multiple senders are imperfectly informed; Section
5 of our paper makes a similar robustness case in our setting.

3Glazer and Rubinstein (2004) also mention a number of examples, such a judge who can subpoena
only one witness and needs to choose; or an investigator who can verify details of only one procedure
performed by a doctor who is accused of malpractice. These examples relate to our paper as well.

4Other papers studying communication of multidimensional information include Austen-Smith and
Fryer (2005) who study a model where signaling communicates two dimensions of an agent’s type (‘eco-
nomic’ and ‘social’), and Polborn and Yi (2006) and Egorov (2015), where each politician chooses a topic
to campaign on to impress the voters.
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The rest of the paper proceeds as follows. In Section 2, we set up the framework

and define the notion of a valid mechanism. Section 3 analyzes the model, and shows

that full learning is possible when the sender’s reward function is submodular but not

when it is supermodular. Then, in Section 4 we consider a variation in which senders

who are caught lying can be more severely punished; in this case we can give stronger

results, including a complete characterization of when full learning is possible. In Section

5 we show that our results do not critically depend on the assumption that verification

is precise, by providing an example where almost full learning is achieved with noisy

verification. Section 6 concludes.

2 Setup

There are two agents, whom we call the sender and the receiver. The sender has multi-

dimensional private information, which we call his type and denote a = (a1, . . . , an) ∈ A,

where A = [0,∞)n is the space of possible types. This type follows a prior distribution

Φ ∈ ∆(A).

After the sender and receiver interact, the receiver will be left with some (possibly

probabilistic) belief µ ∈ ∆(A) concerning the sender’s type. We take as given a function

V : ∆(A) → R; V (µ) denotes the payoff that the sender gets if he induces belief µ. In

particular, for a type a ∈ A, we write V (a) for the payoff the sender gets if he induces a

belief that is a point mass on a.5 For instance, in the job candidate example, V (a) could

represent the salary that the candidate will receive if he convinces the interviewer that his

type is a (perhaps this is simply the marginal product for the firm of a worker of type a).

In the prosecution example, V (a) would denote the probability that the prosecutor drops

the case. More generally, we have in mind a signaling-game-like situation in which, after

learning, the receiver takes some action that generates a payoff for the sender; but we

have no need to model this action explicitly, so instead we summarize it with the function

V (·).
When the sender communicates with the receiver, he faces uncertainty over what be-

lief µ will be induced: in particular, if the receiver plans to verify a randomly chosen

dimension, µ may depend on which dimension is verified. We assume that V (·) is a von

Neumann-Morgenstern utility function, so that the sender acts to maximize the expec-

tation of V (µ). We assume throughout that V is weakly increasing: if µ and µ′ are two

distributions on A, and µ first-order stochastically dominates µ′, then V (µ) ≥ V (µ′). We

5Although we define V (µ) for arbitrary beliefs, it will soon become clear that we mostly need to
concern ourselves only with degenerate beliefs.
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also normalize V (0) = 0 (hereinafter, we will use 0 to denote the null vector when it does

not cause confusion).

The sender and the receiver can engage in a strategic interaction with the following

structure: The sender can transmit a message. The receiver can then verify up to one

component of the sender’s type, if she wishes. For most of the paper, we assume that

verification of dimension i makes the receiver perfectly informed about ai. (This will be

relaxed in Section 5, where the receiver will get a noisy signal s; for now s will denote the

perfect signal about ai obtained by the receiver.) The receiver can commit in advance to

the verification strategy, but has no control over the post-verification interaction and thus

simply takes as given the function V (·). We will also, in line with the mechanism design

tradition, assume that the receiver can choose an equilibrium of the ensuing game.

We assume that the receiver simply wishes to learn as much as possible. In particular,

our interest is in whether there exists a way for the receiver to learn the sender’s type

perfectly in equilibrium.

Formally, the object chosen by the receiver — describing both the game in which

the sender and receiver interact, and the equilibrium thereof — is a mechanism, a tuple

M = (M,σ, p, µ), where:

• M is a message space;

• σ : A→ ∆(M) is a (possibly mixed) reporting strategy for the sender;

• p is a (possibly mixed) verification strategy for the receiver, specifying probabilities

(p0(m), . . . , pn(m)) that sum to 1, for each m ∈M (here pi(m) is the probability of

verifying dimension i, for i ≥ 1, and p0(m) is the probability of no verification);

• µ is a belief system for the receiver, specifying posteriors µ(h) ∈ ∆(A) for each

h ∈ H, where H = (M × {0}) ∪ (M × {1, . . . , n} × [0,∞)) is the set of possible

histories (for the receiver).

Note that the receiver’s beliefs are defined as functions of the history; a history may

be of the form (m, 0) (meaning that message m was sent and there was no verification)

or (m, i, s) (message m was sent, dimension i was verified and the value observed was s).

We assume that once the belief µ is induced, the sender receives a payoff equal to V (µ).

We say that the mechanism is a direct mechanism if the sender just reports his type

truthfully: M = A, and σ(a) = a (deterministically) for each a.

We say that a mechanism M = (M,σ, p, µ) is valid if it satisfies the following three

conditions:
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• Incentive compatibility (for sender): For each a ∈ A, σ(a) has its support contained

in the set of m ∈M that maximize

p0(m)V (µ(m, 0)) +
n∑
i=1

pi(m)V (µ(m, i, ai)).

• Bayesian updating : Let ζ(h) denote the equilibrium probability measure over the

set of full histories H̄ = A × H, where a full history specifies both the sender’s

true type and the interaction with the receiver. Then, for any measurable set of

full histories H̄ ′ ⊂ H̄ and any measurable set of types A′ ⊂ A,
∫
H̄′ µ(h)(A′) dζ(h) =∫

H̄′ 1a∈A′ dζ(h).

• Trusted verification: For any history h = (m, i, s), the belief µ (h) puts no probabil-

ity on types with ai 6= s.

The trusted verification condition effectively serves to restrict off-path beliefs: it says

that if the sender sends message m, yet verification reveals that he was a type who should

not have sent m in equilibrium, the receiver should infer that the sender deviated, not

that the verification went wrong.

The receiver thus chooses a valid mechanism, with the goal of learning as much as

possible about a. In particular, we are interested in the existence of mechanisms that

allow for full learning : for every type a, at every history h ∈ H(a|M), the belief µ(h) is

degenerate on type a, where we define

H(a|M) = {(m, 0) : m ∈ supp(σ(a)) and p0(m) > 0}
∪ {(m, i, ai) : m ∈ supp(σ(a)) and pi(m) > 0},

the set of histories that can arise when the sender has type a.6

Because we are interested only in full learning (until Section 5), we can simplify in

several ways. First, a version of the revelation principle applies:

Lemma 0. If there exists a valid mechanism with full learning, then there exists a valid

direct mechanism with full learning.

6In some applications, we may think the receiver is content to learn the value of V (a) without learning a
itself: e.g. the employer may be interested in knowing the worker’s total output, but not how it is achieved.
While learning V (a) may appear to be a simpler problem than learning a, in fact it is not: if there is a
valid mechanism that allows the receiver to learn V (a), there is also one that achieves full learning. For
a formal statement and proof, see Proposition A3 in the Appendix.
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The proof is in the Appendix.

With this result in mind, we can focus on direct mechanisms. Since in this case M = A

and σ is an identity mapping, the description of a direct mechanism consists only of the

verification probabilities and the beliefs. Moreover, beliefs are pinned down at the on-path

histories, i.e. those in H(a|M): the belief must be degenerate on type a. At “off-path”

histories, in particular (a, i, s) with s 6= ai, the receiver may have any beliefs, as long

as they are consistent with the revealed value of s (the trusted verification condition).

However, since we are interested in understanding whether it is possible to incentivize

truthful reporting, it is sufficient to consider “punishment” beliefs that lead to the lowest

possible payoff for the sender at such histories. Since V is increasing, this means that

at such an off-path history where s was observed, the receiver should simply believe the

sender’s type is equal to ã with ãi = s and ãj = 0 for all j 6= i (and thus confer reward

V (ã) on the sender).

The upshot of this discussion is that, for purposes of studying whether full learning

is possible, we can focus on the choice of verification strategy. Full learning is possible

if and only if there exists a choice of verification probabilities (for a direct mechanism),

p = (p0, . . . , pn) with each pi : A → [0, 1] and
∑

i pi(a) = 1 for each a, satisfying the

following incentive compatibility condition for all types a and â:

V (a) ≥ p0(â)V (â) +
n∑
i=1

pi(â)wi(â|a), where wi(â|a) =

{
V (â) if âi = ai,

V (a|i) if âi 6= ai,
(1)

where a|i denotes the type whose i-coordinate is ai and other coordinates are all zero.7

Indeed, here the left side of the inequality represents the payoff that the sender gets from

truthfully reporting type a, which will be V (a) no matter which dimension is verified; and

the right side is the expected payoff from reporting â, given the punishment beliefs.

A few remarks, before moving on:

• The above formulation in terms of direct mechanisms backs up our claim in Foot-

note 5, that only the values of V at degenerate beliefs matter. So we will henceforth

think of V as being defined only on A, instead of on ∆(A). Then the monotonicity

requirement just says that if a′ ≤ a, then V (a′) ≤ V (a) (hereinafter, we use ≤ to

denote the componentwise partial order).

• The incentive compatibility conditions are invariant under translating the function

V (·) by a constant. Thus it is indeed just a normalization to assume that V (0) = 0.

7In line with this notation, we will use 1|i to denote the unit vector in the ith direction.
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• Although the prior Φ was needed for the general setup (to formulate posteriors),

note that the existence or nonexistence of a full-learning mechanism does not depend

on the prior at all. We will need it in Section 5, however.

3 Analysis

We start by analyzing the case of additively separable payoff functions; this includes the

linear case as in the example from the Introduction. Here we can give a construction

that directly generalizes that example. We then study the cases of submodular and

supermodular payoff functions. The main results are that full learning is possible when the

payoff function is submodular, but not when it is supermodular. The Section finishes with

a complete characterization of when full learning is achievable in the special case n = 2.

For a rough intuition about why the submodular versus supermodular distinction

arises, think about the job candidate with two possible skills, as in Example 1. A candidate

who is strong on one skill but weak on the other has a potential incentive to pretend to

be strong on both. This can be deterred if the weak skill is verified with sufficiently

high probability. But if the skills are complements (supermodular case), the gains from

appearing to be strong on both skills rather than just one are high, and there is no way

to choose verification probabilities to deter both a (strong math, weak coding) candidate

and a (weak math, strong coding) candidate. In contrast, if the skills are substitutes

(submodular case), the gains are smaller and this can be done. Another way to put

is as follows. In the submodular case (e.g., if the quality equals the maximum of the

dimensions), the strongest skill is informative about the candidate’s overall quality. In

this case, the goals of learning the quality and deterring deviations are aligned, and are

achievable by putting a high probability on the stronger dimension. However, in the

supermodular case (e.g., if the quality equals the minimum of the dimensions), it is the

weakest skill that is informative of the quality, and the goals of learning and deterring

deviations are at odds.

3.1 Additively separable case

Suppose V (a) is additively separable in its components, so

V (a) =
n∑
i=1

vi (ai) , (2)
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where vi : [0,∞)→ R are increasing functions. Since we assumed V (0) = 0, we may pick

vi (·) such that vi (0) = 0 for each i.

Our first result establishes a mechanism that achieves full learning.

Proposition 1. Suppose that V is additively separable and defined by (2). Then there

exists a valid mechanism with full learning. Moreover, this can be accomplished by a direct

mechanism using the verification probabilities

pi(m) =
vi (mi)

V (m)
=

vi (mi)

v1 (m1) + · · ·+ vn (mn)
(1 ≤ i ≤ n), p0(m) = 0

for each m such that V (m) 6= 0 (and arbitrary verification probabilities for m such that

V (m) = 0, in particular m = (0, . . . , 0)).

The argument straightforwardly extends the example in the Introduction.

Proof. We just need to check that incentive compatibility (1) is satisfied. Note that

wi(â|a) = V (â) if âi = ai, and vi(ai) otherwise; hence pi(â)wi(â|a) ≤ vi(ai), with equality

if âi = ai. Since p0(â)V (â) = 0 for all â, condition (1) immediately follows.

The mechanism suggested in Proposition 1 has several remarkable properties. To

state them, assume for simplicity that each vi is strictly increasing, and in particular

V (a) = 0⇔ a = (0, . . . , 0).

• The mechanism can be implemented as an indirect mechanism, as in the Introduc-

tion, where the sender chooses a probability distribution (p1, . . . , pn) over dimensions

to verify (so M is an n− 1-dimensional simplex of probabilities). When dimension

i is verified and the observed value is s, the receiver infers vj(aj) =
pj
pi
vi(s) for each

j, and so infers a completely by inverting each vj.

• The mechanism also does not actually require the receiver to commit to the ver-

ification strategy, as we have assumed. Indeed, if she could freely choose which

component to verify, note that once she has heard message m, she expects to end

up believing (with probability 1) that the sender is type m (and to give reward

V (m)) regardless of which component she verifies, so she is indifferent at this stage.

• As mentioned above at the end of Section 2, the mechanism does not depend on the

distribution of sender’s type Φ. Moreover, it would perform just as fine if the receiver

had a wrong belief about Φ. Implementing this mechanism therefore requires the

receiver to know the payoff function V (·) and nothing else.
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• In the case where all vi are linear, the indirect implementation highlights that the

parties do not need to agree on the “scale” in which the type is measured, i.e. it

works even if the sender perceives his type as (λa1, . . . , λan) rather than (a1, . . . , an),

for an arbitrary positive scalar λ.

Our second result is that the mechanism is essentially unique.

Proposition 2. Assume that V is additively separable and defined by (2). Let M =

(M,σ, p, µ) be a valid (possibly indirect) mechanism with full learning. Then for any type

a ∈ A with V (a) > 0, for any m ∈ supp(σ(a)), we have

pi(m) =
vi (ai)

v1 (a1) + · · ·+ vn (an)
(1 ≤ i ≤ n), p0(m) = 0.

Proof. Consider an alternative type a′ that agrees with a in all coordinates except in

coordinate i, where a′i = 0. Let m be any message in the support of σ(a).

The assumption of full learning implies that, if type a′ sends message m and coordinate

i is not verified, then the resulting belief places probability 1 on type a, and the sender gets

reward V (a). Hence, the expected payoff to sending message m is at least (1−pi(m))V (a).

So incentive compatibility for the pair of types a′ and a implies

V (a′) ≥ (1− pi(m))V (a),

which implies

pi(m) ≥ V (a)− V (a′)

V (a)
=

vi(ai)

v1(a1) + · · ·+ vn(an)
.

Since we must also have
∑n

i=1 pi(m) ≤ 1, the inequalities for pi(m) must hold as equalities,

and also p0(m) = 0.

3.2 Submodular payoff functions

The previous section showed that full learning is possible when V is additively separa-

ble. This can be generalized considerably: Full learning is achievable as long as V is

submodular.

Proposition 3. Suppose that V is submodular. Then there exists a valid mechanism that

achieves full learning.

The full proof of Proposition 3 is in the Appendix, but it is worthwhile to give a sketch

here. We are looking for a direct mechanism; our goal is to find verification probabilities
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pi(a) for a ∈ A such that all incentive constraints are satisfied. For any given a ∈ A,

we need to choose pi(a) so that no type z 6= a wants to deviate by reporting type a;

in making this choice, we can ignore the incentives of type a to deviate to other types.

This contrasts with the typical situation in mechanism design, where the allocation to

a particular type affects both that type’s own incentives to misreport and other types’

incentives to claim to be that type. Here, since we are interested in a mechanism that

achieves full learning, the equilibrium payoff for any type a is fixed at V (a), and we are

only left with discouraging deviations by other types to a.

With that in mind, we fix a ∈ A and let p0(a) = 0. Take any vector p of verification

probabilities following report a; for any type z ∈ A we define Gp(z) as the gain in payoff

for type z by misreporting as type a rather than reporting truthfully. If we can find some

p such that Gp(z) ≤ 0 for every z, then our mission is accomplished. We also focus just on

types z with z ≤ a; this turns out to be enough (intuitively, smaller types have stronger

incentives to misreport).

So assume, to obtain a contradiction, that no matter which p we take, there will

always be some z with Gp(z) > 0. If so, we consider the set of “maximal deviators”

Dp = arg maxz≤aGp(z); this set is nonempty if V is continuous (the full proof makes

adjustments that handle discontinuous V as well). Now let Ep be the set of alternative

verification probabilities q such that Gq(z) ≤ 0 for all z ∈ Dp. That is, Ep is the set of

probability vectors that would deter deviations by all the types that were most inclined

to deviate under p. If it turns out that p ∈ Ep, we would get an immediate contradiction,

as the maximal deviations in Dp should at least be profitable under p. The problem is

therefore reduced to showing that the set-valued mapping p 7→ Ep has a fixed point.

It is easy to check that Ep is compact and convex. It is also nonempty: From the

submodularity of V , we can show that Dp is a lattice, and its largest element cannot be a

(because if a ∈ Dp then a has the highest incentive to misreport as a, but this incentive is

zero, so we are done). Hence there exists some coordinate i in which zi < ai strictly for all

z ∈ Dp, and then verifying dimension i with probability 1 would successfully discourage

all types in Dp from misreporting. Unfortunately, E might not be upper-hemicontinuous,

and thus we cannot immediately apply Kakutani’s theorem to show existence of a fixed

point. However, in the Appendix we “smooth out” Ep by constructing an auxiliary set

Qp ⊂ Ep for which Kakutani’s theorem applies. Any fixed point of mapping Q is also a

fixed point of mapping E, which yields the desired contradiction.

While the proof of Proposition 3 is nonconstructive, in the case of two dimensions we

can give an explicit description. Specifically, the following is true.
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Proposition 4. Suppose that V is submodular and n = 2. Then the following valid

direct mechanism achieves full learning: upon receiving message m, the receiver verifies

dimensions 1 and 2 with probabilities

p1 (m) =
V (m)− V (m|2)

2V (m)− V (m|1)− V (m|2)
, p2 (m) =

V (m)− V (m|1)

2V (m)− V (m|1)− V (m|2)
,

unless V (m) = V (m|1) = V (m|2), in which case these probabilities p1(m) and p2(m)

may be chosen arbitrarily; in all cases, we take p0(m) = 0.

Proof. We need to show that no type z wants to misreport as type a. If both z1 6= a1

and z2 6= a2, then the lie will be detected for sure; in particular, if dimension i is verified,

the sender’s payoff is V (z|i) ≤ V (z), which implies that he would be better off reporting

truthfully. So we can assume that z and a differ in only one dimension. Without loss of

generality, consider the case z1 = a1, z2 6= a2.

It is clear that the deviation is not profitable if z2 > a2, because then z ≥ a coordi-

natewise, so V (z) ≥ V (a) and there is no gain for type z to misreport as type a. Thus,

consider the case z2 < a2. Then the gain from deviation by type z to a equals

G(a|z) = p1(a)V (a) + p2(a)V (z|2)− V (z)

= p1(a)(V (a)− V (z)) + p2(a)(V (z|2)− V (z))

≤ p1(a)(V (a)− V (a|1))− p2(a)(V (z)− V (z|2))

≤ p1(a)(V (a)− V (a|1))− p2(a)(V (a)− V (a|2)) = 0,

where the first inequality follows from monotonicity (V (z) ≥ V (z|1) = V (a|1)) and the

second from submodularity. Thus the gain is nonpositive for any a and z, which completes

the proof.

3.3 Supermodular payoff functions

We next observe that for some V (a) there does not exist a mechanism that achieves full

learning. Consider the following example.

Example 2. Suppose n = 2, and V (a1, a2) = a1a2. Let us prove that there is no valid

mechanism that achieves full learning. Consider the type a = (1, 1), for which V (a) = 1.

When the sender reports this type, the first dimension must be tested with probability

1: otherwise, the sender of type (0, 1) could report (1, 1) and have a positive probability

of being undetected, so would get a positive expected payoff, better than the 0 he gets
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by telling the truth. Similarly, for a report of (1, 1), the second dimension must also be

tested with probability 1. Since only one dimension can be tested, this is a contradiction.

This example generalizes greatly:

Proposition 5. Suppose that there is a type a such that

V (a) >
n∑
i=1

V (a|i). (3)

Then there does not exist a valid mechanism that achieves full learning.

Note that if V is strictly supermodular (and V (0) = 0 as we have assumed), then the

condition in the proposition is satisfied for any type a that is positive in every coordinate.

So, the proposition covers such functions (but is also much more general).

Proof. Take type a for which the inequality holds. Let p be the vector of probabilities that

this type a gets tested on each dimension. For each i ∈ {1, . . . , n}, consider a sender with

type a|i. If he chooses his equilibrium action, his payoff will be V (a|i). If, however, he

misreports as type a, then with at least probability p0+pi the deviation will go undetected.

In equilibrium, such deviation cannot be profitable, which implies

V (a|i) ≥ (p0 + pi)V (a).

Adding these inequalities for each i, we get a contradiction to (3). This contradiction

completes the proof.

3.4 Concave transformations

Another interesting property is that any mechanism that achieves full learning is robust

to concave transformations of the sender’s payoff function:

Proposition 6. Let V be such that full learning is achievable in a valid direct mechanism

M. Then, the same mechanism M also achieves full learning when the payoff function

is V ′ = U ◦ V , where U : [0,∞)→ [0,∞) is any increasing, concave transformation.

The proof is in the Appendix. Essentially, the result holds because when a mecha-

nism achieves full learning, the sender is certain of his payoff along the equilibrium path,

whereas by deviating he gets a lottery over payoffs. Concave transformations make such

a lottery even less desirable.
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Concave transformations can arise naturally in two ways. First, if V is the monetary

payoff that the sender receives (for example, if he is a job candidate who is paid his

perceived marginal product), then U can represent risk aversion. Thus, the proposition

says that any mechanism that achieves full learning for a risk-neutral sender also works

when the sender is risk-averse. Second, V might represent value measured in some abstract

units, and U can represent decreasing returns. For example, if the job candidate’s “total

skill” is a1 + · · · + an, the proposition says that any mechanism that works when the

candidate’s marginal product equals his total skill also works when there are decreasing

returns to total skill.

3.5 Full characterization for n = 2

Propositions 1, 3, and 5 above imply that full learning is possible for additively separable

or submodular, but not supermodular, payoff functions. In the two-dimensional case, we

can provide a necessary and sufficient condition on V for full learning to be achievable.

Proposition 7. Suppose that n = 2. Then full learning is achievable with a valid mech-

anism if and only if V satisfies the following property: for any two types x, a ∈ A with

x < a, we have

(V (a)− V (x1, a2)) (V (a)− V (a1, x2)) ≤ (V (x1, a2)− V (x|1)) (V (a1, x2)− V (x|2)) .

The proof is in the Appendix, but the idea behind it is simple, in the light of the ideas

discussed earlier. There two types of deviations that the mechanism needs to prevent:

from x to a where x1 < a1 and x2 = a2, and from x to a where x1 = a1 and x2 < a2.

To prevent the first type of deviations, we need the probability that the first dimension

is checked, p1 (a), to be sufficiently high. To prevent the second type, we similarly need

p2 (a) to be sufficiently high. The criterion ensures that these conditions are compatible.

4 Punishment for lying

In the definition of a valid mechanism, we proposed the “trusted verification” requirement,

that if the sender’s message and the verification device come into conflict, the receiver’s

belief should respect the result of the verification — and the sender’s payoff should reflect

this. However, in some applications, it is plausible to think that it is possible to use

different payoffs at these off-path histories. For example, in the employment application,

we might simply imagine that the company might refuse to hire a candidate who has been
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caught lying, even though he still has some skills; in the insurance claim example, the

insurance company might not be obligated to honor any claims if it has shown that some

claim was false.

For this reason, in this section, we drop the trusted verification requirement from

the definition of a valid mechanism; but we still assume that the sender’s payoff cannot

be made lower than the payoff of the worst possible type, V (0) = 0. We call the set

of mechanisms defined in this way valid mechanisms with punishment. As usual, we can

restrict attention to mechanisms that deliver the worst possible punishment if a misreport

is detected, which is 0 in our case. Thus (continuing to focus on direct mechanisms), the

incentive compatibility condition simplifies to

V (a) ≥

(
p0(â) +

∑
i: âi=ai

pi(â)

)
V (â). (4)

For this case of valid mechanisms with punishment, we can obtain tighter results, as

follows. First, the results from Section 3 (except for the characterization for n = 2 in

Proposition 7) continue to hold. Second, we can give a full characterization of which

functions V (·) allow for full learning: Proposition 9 provides a necessary and sufficient

condition for any n. Third, in the case of submodular payoff functions, we can now give

an explicit construction of a valid mechanism with punishment that achieves full learning

for any n as well; this is shown in Proposition 10.

4.1 Robustness of main results

Proposition 8. Without the trusted verification requirement (i.e. in the case of valid

mechanisms with punishment), Propositions 1–6 are correct as stated.

Proof. This statement is obvious for Propositions 1, 3, 4, and 6. For the uniqueness

result (Proposition 2) and impossibility of full learning for supermodular payoff functions

(Proposition 5), examining the proofs reveals that they go through even when punishment

with 0 payoff is possible.

4.2 Full characterization

We now provide a necessary and sufficient condition for full learning to be achievable.

Following our earlier a|i notation, whenever S ⊂ {1, . . . , n} is a set of indices and a ∈ A,

define a|S as the type that agrees with a on the components i ∈ S, and whose other

coordinates are all zero.

17



Proposition 9. There exists a valid mechanism with punishment that achieves full learn-

ing if and only if V satisfies the following condition. For every a ∈ A, and any collection of

nonnegative weights λS for each of the 2n sets S ⊂ {1, . . . , n} that satisfies
∑

S:i∈S λS = 1

for each index i = 1, . . . , n, we have

V (a) ≤
∑

S⊂{1,...,n}

λSV (a|S).

The proof is in the Appendix.

To see why a full characterization is possible, consider what happens to the incentive

condition (4) when we hold fixed the report â, and also hold fixed the coordinates ai of

the true type for which ai = âi, but vary the other coordinates aj. Then the right side

of (4) is constant, while the left side is increasing in a. Consequently, the constraint is

tightest when a = â|S for some set S: if we can deter these types a from reporting â, then

all other types are deterred as well. So full learning is achievable as long as we can choose

the verification probabilities for each type a to deter misreporting by the (finitely many)

types a|S. The proposition gives a duality-based characterization of when this is possible.

Using this proposition, we can readily check that there are functions V (a) that allow

full learning using a valid mechanism with punishment, but not in the original setting

where trusted verification limits the possible punishments. Here is an example.

Example 3. Let n = 2, and let V (a) be a two-dimensional step function as given by

the following table. (By perturbation one could also come up with an example that is

continuous and strictly increasing.)

a2 ∈ (1,∞) 8 9 12

a2 ∈ (0, 1] 7 8 9

a2 = 0 0 7 8

a1 = 0 a1 ∈ (0, 1] a1 ∈ (1,∞)

This function satisfies the condition of Proposition 9, but not Proposition 7; thus it

allows full learning when we allow lies to be punished by zero payoff, but not in the

original model.8 One can also see this directly: to implement when zero punishments are

possible, simply specify that a report that is positive on both dimensions should have each

dimension tested with probability 1/2; if it is positive only on one dimension, test that

dimension with certainty. On the other hand, when zero punishments are not possible,

8The condition in Proposition 9 takes a particularly simple form if n = 2: the only possible weights are
of the form λ{1} = λ{2} = λ and λ{1,2} = 1− λ, and the condition simplifies to V (a) ≤ V (a|1) + V (a|2).
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consider the report (2, 2). Some dimension must be tested with probability at most 1/2,

say dimension 1. Then type (1, 2) has the incentive to misreport as (2, 2), since even if his

lie is caught (which has probability at most 1/2) he still gets a payoff of 7, and otherwise

he gets a payoff of 12, for a total payoff of not less than 19/2 > 9.

4.3 Explicit construction for submodular functions

Now we give an explicit construction for a mechanism that works when V is submodular.

Again following on our a|S notation, for each a ∈ A and each i = 1, . . . , n, let a|[i] be the

type whose first i components agree with a, and whose remaining n − i components are

all zero. Consistently with this, let also a|[0] = (0, . . . , 0).

Proposition 10. Suppose that V is submodular. Then the following valid mechanism with

punishments achieves full learning: If V (m) > 0, dimension i is verified with probability

pi (m) =
V (m|[i])− V (m|[i−1])

V (m)
, p0 (m) = 0,

and if V (m) = 0, the probabilities are chosen arbitrarily.

The proof is in the Appendix; it is a straightforward application of a construction used

more generally in the proof of Proposition 9.

5 Imperfect verification

So far, we have assumed that if the receiver chooses to verify dimension i of the sender’s

private information (type), she observes the exact value of ai. With a direct mechanism

in use, this means that a sender can be severely punished if he is caught lying: if he

claims (say) type (3, 5), but component 1 is verified and found to equal 2.99, he can be

punished with the payoff V (2.99, 0). So a natural question is whether our results are

robust to noisy verification: If there is a small amount of noise, is it still possible to learn

the sender’s type almost perfectly? Our answer to this robustness concern is twofold.

First, Example 1 presented an indirect version of the mechanism where all histories are

on-path; this already shows that our main results are not artifacts of discontinuities in

off-path beliefs. Second, below we consider an extension where a small amount of noise is

introduced explicitly, and show formally that almost full learning is possible in the limit,

by a suitably perturbed version of the original indirect mechanism.
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More specifically, assume that if dimension i is verified, the receiver gets a noisy signal

s ∈ [0,∞), drawn from a full-support distribution ρi (s|ai). The original definition of

a valid (indirect) mechanism extends readily to this case, with incentive compatibility

appropriately formulated by taking expectations over the possible signals. Note that the

trusted verification condition no longer applies, since every signal realization is possible

for any type.

In this section, we show how near-full learning can indeed be achieved with small noise,

at least in the canonical example. We make some specific distributional assumptions. We

define Φ, the distribution of sender’s types, as follows. Let (ν1, . . . , νn) be a vector of any

real numbers, (τ1, . . . , τn) be a vector of positive numbers (we let τ =
∑

i τi), and let K be

a positive constant. Consider an auxiliary distribution on [0,∞)n, defined by generating

a random type z as follows: each zi is lognormal, with log zi ∼ N
(
νi,

1
τi

)
(so νi is the

mean and τi is the precision), and the dimensions {zi}i∈{1,...,n} are independent. Refer to

this distribution of z as Λ.

Let AK be the cone defined by inequalities

AK =

{
a :

ai∑n
j=1 aj

≥ τi
τ +K

for each i

}
.

Notice that for any K > 0, this set is nonempty and becomes the entire positive octant

A as K → ∞. Now, we define distribution Φ as Λ, restricted on the cone AK . (The

usefulness of this restriction will be evident from the result below, where it will simplify

the description of the mechanism by ensuring positiveness of the probabilities involved.)

We now define ρi(s|ai), the conditional distribution of the signal s that the receiver gets

if she verifies dimension i of a sender with type a, as lognormal with log s ∼ N
(

log ai,
1
χ

)
(and if ai = 0, then s = 0 for sure). This is equivalent to assuming that s = aiη, where

η is multiplicative noise (independent from a) such that log η ∼ N
(

0, 1
χ

)
. Here χ is

a parameter governing informativeness of the signal. As χ → ∞ the signal becomes

perfectly informative.

Since the receiver will now typically have non-degenerate posterior beliefs, we need to

return to having V be a function of the belief. For simplicity we assume that V depends

only on the posterior mean, and is linear: V (µ) = Ea∼µ [
∑n

i=1 ai].

In this setting, it is easy to see that a direct mechanism would not be able to achieve

full learning. Indeed, if the sender reports his type truthfully and any signal s can occur in

equilibrium if dimension i is verified, then the Bayesian property implies that the sender’s

report â should always be trusted, which obviously creates room for manipulation. It is
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only slightly less obvious that an indirect mechanism cannot achieve full learning either:

again, since any signal realization is possible, the message m alone must be sufficient to

infer the sender’s type in equilibrium, leading to manipulation as before. In this sense,

the results that guarantee full learning do not immediately extend to the case with noisy

verification. However, below we prove that “almost full” learning is achievable as the

variance of noise goes to zero, at least with our distributional assumptions.

To state this result formally, recall that for any mechanismM = (M,σ, p, µ), µ = µ (h)

is defined as the posterior distribution of a conditional on history h. Let κ = κ (a) be

the probability measure that “aggregates” µ (h) over all possible histories that type a can

generate. Formally, κ (a) on any measurable A′ ⊂ AK is given by

κ (a) (A′) = Em∼σ(a)

[
p0(m)µ(m, 0)(A′) +

n∑
i=1

pi(m)

∫ ∞
0

µ(m, i, s)(A′) dρi(s|ai)

]
.

(In the mechanisms we consider below, the strategy σ will be deterministic, so the ex-

pectation operator on the right becomes unnecessary.) We show below that, essentially,

κ = κ (a) converges to a for all a ∈ AK as the noise disappears.

Proposition 11. There exist a set of valid mechanisms {Mχ}χ>K, whereMχ = (Mχ, σχ, pχ, µχ),

such that for any a ∈ AK, the corresponding probability measure κχ (a) converges in distri-

bution to an atom on a as χ→∞. In other words, for any a ∈ AK and any ε, δ > 0 there

is χε,δ,a such that for any χ > χε,δ,a, the probability Prx∼κχ(a) (maxi |xi − ai| > ε) < δ.

Furthermore, we can take mechanism Mχ such that Mχ is the unit simplex of prob-

abilities restricted to the cone AK; the reporting strategy σχ (a) of any type a ∈ AK

prescribes him to report his “relative skills”
{

ai∑n
j=1 aj

}
i∈{1,...,n}

with probability 1, and

the receiver, after getting message m, verifies dimension i ∈ {1, . . . , n} with probability

pχi (m) = mi

(
1 + τ

χ

)
− τi

χ
, with pχ0 (m) = 0.

The proof is in the Appendix, but some features of the mechanisms {Mχ}χ>K are

worth discussing. As in Example 1, the mechanism includes the sender communicating

his relative skills to the receiver. Importantly, the total ability V (a) =
∑n

i=1 ai is not

communicated, and thus the receiver uses the signal s to make conclusions about the

“scale.” The receiver tests dimension i with probabilities pχi (m), which are all positive on

AK , provided that χ > K. As before, a higher sender’s report on dimension i increases the

likelihood of it being tested, which is intuitive as then the potential gain from deviation

is higher. In addition, and this is a new feature, dimension i is more likely to be tested

if τi is low, i.e., if the variance 1
τi

of the prior distribution of ai is high. This feature is
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intuitive: with higher variance of ai, the sender’s message has a significant influence on

the receiver’s posterior, and it is important to discourage the sender from exaggerating

that dimension, which is achieved by testing it with a high probability. In contrast, if the

variance of ai is low, then different types largely generate the same distribution of signals

when dimension i is tested, which means that testing this dimension is of little use in

providing incentives for truthful reporting. In the extreme, with zero variance of ai, its

value is perfectly known to the receiver, and testing that dimension clearly is not useful.9

We do not claim that the mechanisms constructed, {Mχ}, are optimal in any sense on

their own; what is important is that these are valid mechanisms that achieve convergence

of the posterior distributions. In other words, we showed that it is possible to approximate

the mechanism highlighted in the Introduction such that full learning is achieved in the

limit as verification becomes more and more precise, at least under some distributional

assumptions. This demonstrates that the possibility of eliciting multidimensional infor-

mation with verification of only one dimension is not an artifact of perfect verification

and discontinuous punishment.

6 Conclusion

We considered the problem of strategic transmission of multidimensional information

between a sender and a receiver, where the receiver is able to verify at most one dimension.

If the receiver chooses this dimension without any input from the sender, she learns just

that dimension, at least if dimensions are uncorrelated. An obvious improvement is to

ask the sender which dimension to test; in this case, the receiver perfectly learns that

dimension, and the sender’s choice reveals some information about the other dimensions

as well. The main contribution of our paper is showing that if we take this logic just

one step further and allow the sender to choose among randomized tests, the receiver

may learn the sender’s type fully, for a wide range of the sender’s objective functions.

Importantly for us, full learning does not arise as an artifact of discontinuities resulting

from perfect verification; we show that with small noise, full learning may be achieved in

the limit, at least in our example where we obtained a closed-form solution.

While the paper’s main contribution is theoretical, we believe it has practical take-

aways. In the additively separable case, our mechanism has an intuitive implementation,

with the sender offering probabilities of being tested in each dimension and the receiver

9 These particular mechanisms {Mχ} remain valid and achieve full learning in the limit for some other
payoff functions, in particular, for V (µ) = (Ea∼µ [

∑n
i=1 ai])

γ
for γ ∈ (0, 1). In other words, almost full

learning is possible in this case even if the sender is risk-averse rather than risk-neutral (this complements
Proposition 6). This fact is proved in the Appendix (Proposition A2).
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giving the tests with exactly these probabilities. Such a mechanism is, in our view, suffi-

ciently natural to be of practical use. For example, it is quite common for an interviewer

to ask the job candidate to describe a project (or, in an academic context, a paper) that

he listed on the vita, with the understanding that the candidate will proceed with the

best one. But the candidate may instead offer the interviewer to make the selection, or at

least suggest a couple to choose from, or he may even suggest a few and try to nudge the

interviewer towards one or the other. Clearly, this communicates additional information

about the candidate’s willingness to talk about each project, which is very much in line

with the spirit of the proposed mechanism.

The paper’s results suggest many interesting directions for further inquiry. A natural

question is how much information may be transmitted if full learning is impossible, for

example, if the sender’s payoff is supermodular, e.g. a Leontief function of his skills.

Alternatively, suppose that even offering one test is costly (as in e.g. Ben-Porath, Dekel,

and Lipman, 2014); then a direct mechanism would create commitment problems for

the receiver, who would not want to verify ex post, but the indirect mechanism, where

probabilities are communicated but not the scale, would not (at least for small cost).

Actually, in this case, if full learning is achievable, it might not be optimal, since the

receiver could economize by not testing over a small range of types close to zero; a

natural question is what an optimal mechanism looks like. As another possible application,

consider a professor who wants to test her students on multiple topics. In this example,

running our proposed mechanism would consist of asking students to report their relative

skills and then administering a test with just one (randomly determined) question. This

might not be desirable, either because any single question reveals too noisy a signal,

or because the students may not know their relative skills perfectly. Here, the natural

solution is to offer several problems instead of one, which in turn poses the problem of

the optimal number of questions an exam should have, and how to choose their topics

for each student in an optimal way (see also Deb and Stewart, 2017, who study a similar

question with a one-dimensional type space).

In all these extensions, a departure from the goal of full learning prevents the results

of our paper from being directly applicable, but some insights and intuitions we have

obtained might be nevertheless useful. Studying the properties of optimal learning mech-

anisms in cases where full learning is not achievable or desirable could be an important

future direction.
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Appendix

The Appendix contains the proofs of all results that are not proved in the main text.

Proof of Lemma 0. Let M = (M,σ, p, µ) be a valid mechanism that achieves full

learning. We wish to construct p′, µ′ that (together with the message space M ′ = A and

the truthful reporting strategy σ′(a) = a) form a valid direct mechanismM′ that achieves

full learning. Let p′i(a) = Em∼σ(a)[pi(m)], the expected probability with which dimension

i is verified for type a in the original mechanism. To define the beliefs, we proceed as

suggested in the text: at histories of the form h = (a, 0) or (a, i, ai), µ
′(h) puts probability

1 on type a; at other histories (a, i, s), it puts probability 1 on type (si, 0−i).

It is immediate from the definition that the mechanism satisfies full learning. To

see that the mechanism is valid, we check the conditions one by one. For incentive

compatibility, notice that if type a reports truthfully he gets a payoff of V (a), whereas by

reporting â he gets a payoff

p′0(â)V (â) +
n∑
i=1

p′i(â)V (µ′(â, i, ai)) = Em∼σ(â)

[
p0(m)V (â) +

n∑
i=1

pi(m)V (µ′(â, i, ai))

]

≤ Em∼σ(â)

[
p0(m)V (µ(m, 0)) +

n∑
i=1

pi(m)V (µ(m, i, ai))

]
≤ V (a).

Here the first inequality follows from the fact that for each m ∈ supp(σ(â)), if p0(m) > 0

then V (µ(m, 0)) = V (â) by full learning in the original mechanism; and likewise, for i ≥ 1,

if pi(m) > 0 then either âi = ai implying V (µ(m, i, ai)) = V (â) = V (µ′(â, i, ai)) by full

learning, or âi 6= ai and V (µ′(â, i, ai)) = V (a|i) ≤ V (µ(m, i, ai)) by trusted verification

and monotonicity of V . The second inequality comes from incentive compatibility of the

original mechanism.

Now, Bayesian updating for the new mechanism follows from the definition of beliefs,

since in equilibrium, with ex ante probability 1, the receiver puts probability 1 on the

true type. Lastly, trusted verification holds by construction. �

Proof of Proposition 3. The proof is non-constructive. For each type a, we show

that there exist corresponding verification probabilities that deter any other type from

misreporting as type a. By doing this for every a, we form an incentive compatible

mechanism.

So fix a type a henceforth. Consider any particular verification probabilities p =
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(p1, . . . , pn) that sum to 1. (We focus on probabilities that definitely verify one dimension,

i.e. the probability of no test is zero.) Notice that the function

Up(a|z) =
n∑
i=1

pi(z)wi(a|z), where wi(a|z) =

{
V (a) if zi = ai

V (z|i) if zi 6= ai

is additively separable in the components of z. Therefore, the gain to type z from misre-

porting as a,

Gp (z) = Up(a|z)− V (z),

is supermodular in z.

Notice first that we can reduce the problem to showing existence of p such thatGp (z) ≤
0 for all z ≤ a. Indeed, suppose that this is true, but there is some x 6≤ a with Gp (x) > 0.

Then supermodularity of Gp (·) implies that Gp (a ∧ x)+Gp (a ∨ x) ≥ Gp (a)+Gp (x) > 0,

since Gp (a) = 0 (here, ∧,∨ are the componentwise min and max operations). But

a∧x ≤ a, which by assertion satisfies Gp(a∧x) ≤ 0; and Gp(a∨x) ≤ 0 because a∨x ≥ a

implies V (a ∨ x) ≥ V (a), so type a ∨ x cannot gain from the deviation. Contradiction.

Hereinafter, we consider z ∈ B = {z ∈ A : z ≤ a}, and use ∆ to denote the (n − 1)-

dimensional unit simplex. Suppose, to obtain a contradiction, that for every p ∈ ∆ there

is z ∈ B such that Gp (z) > 0.

For each p ∈ ∆, let lp = supz∈∆Gp (z). We then have lp > 0 for all p, and since Gp (z)

is a continuous function of p for any fixed z (moreover, it is Lipschitz continuous with

coefficient V (a)), then lp is also a continuous function of p. Now, for any p, let

Dp =

{
z ∈ B : Gp (z) >

n+ 1

n+ 2
lp

}
;

in other words, Dp is the set of z such that the gain from deviation to a is sufficiently

close to the supremum. By definition of lp, Dp 6= ∅ for all p.

For each i ∈ {1, . . . , n}, define

Ri = {p ∈ ∆ : ∃z ∈ Dp : zi = ai} .

Let us show that Ri 6= ∅ for any i. To do that, we show that 1|i ∈ Ri (recall that 1|i means

putting probability 1 on component i). Indeed, suppose 1|i /∈ Ri, then for all z ∈ D1|i ,

zi < ai, and by definition of Gp (z), we have G1|i (z) ≤ 0. However, this is impossible for

z ∈ D1|i by definition of Dp; this contradiction shows that indeed 1|i ∈ Ri.

Introduce the following notation. Let ‖·‖ denote the sup-norm on Rn, and let d (x, Y )
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be the distance from point x to nonempty set Y :

d (x, Y ) = inf
y∈Y
‖x− y‖ .

Now for any ε ≥ 0 and nonempty Y ⊂ ∆, let N (Y, ε) be the closed ε-neighborhood of set

Y , i.e.,

N (Y, ε) = {p ∈ ∆ : d (p, Y ) ≤ ε} .

Consistently with this definition, N (Y, 0) = Y , the closure of Y (which equals Y if Y is

closed).

Let us now show that
⋂n
i=1 Ri = ∅. Suppose not, then there is some p ∈

⋂n
i=1Ri.

Take ε ∈
(

0, 1
n(n+1)

lp
V (a)+1

]
such that for any r ∈ N ({p} , ε), lr ≥ n(n+2)

(n+1)2
lp; this is possible

because lp is continuous (and the coefficient is smaller than 1). Since p ∈
⋂n
i=1Ri, for each

i ∈ {1, . . . , n} there is p(i) ∈ N ({p} , ε)∩Ri; by definition ofRi we can then take z(i) ∈ Dp(i)

such that z
(i)
i = ai. By definition of Dp(i) , we have Gp(i)

(
z(i)
)
> n+1

n+2
lp(i) ≥ n

n+1
lp. By

Lipschitz continuity of Gp

(
z(i)
)

as a function of p (with coefficient V (a)), we have

Gp

(
z(i)
)
≥ Gp(i)

(
z(i)
)
− V (a)

∥∥p− p(i)
∥∥

>
n

n+ 1
lp − V (a)

1

n (n+ 1)

lp
V (a) + 1

>

(
n

n+ 1
− 1

n (n+ 1)

)
lp =

n− 1

n
lp.

Denote, for any k ∈ {1, . . . , n}, y(k) =
∨k
i=1 z

(i); in particular, y(1) = z(1). Let us now

show, by induction, that Gp

(
y(k)
)
> n−k

n
lp. Indeed, the base k = 1 is already established.

Suppose that Gp

(
y(k−1)

)
> n−(k−1)

n
lp, then we have by supermodularity

Gp

(
y(k)
)

= Gp

(
y(k−1) ∨ z(k)

)
≥ Gp

(
y(k−1)

)
+Gp

(
z(k)
)
−Gp

(
y(k−1) ∧ z(k)

)
>

n− (k − 1)

n
lp +

n− 1

n
lp − lp =

n− k
n

lp,

where we used Gp

(
y(k−1) ∧ z(k)

)
≤ lp by definition of lp. This proves the induction step.

Now, taking k = n, we have Gp

(
y(n)
)
> 0. However, y(n) = a, and we get a contradiction,

since Gp (a) = 0. This contradiction shows that p cannot exist, so
⋂n
i=1Ri = ∅.

Now for every p ∈ ∆, define Ep = {q ∈ ∆ : Gq (x) ≤ 0 for all x ∈ Dp}. In other words,

Ep is the set of probabilities that make deviation to a unprofitable for all types x ∈ Dp.

If we can prove existence of p such that p ∈ Ep (i.e., a fixed point of mapping p 7→ Ep),
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then we will reach a contradiction that proves the result. Notice that for every p ∈ ∆, Ep

is closed and convex, because it is the intersection of closed convex sets given by linear

inequalities. Also, for every p ∈ ∆, Ep is nonempty, because p /∈ Ri for some Ri (indeed,

we showed that
⋂n
i=1Ri = ∅, so

⋂n
i=1Ri = ∅ as well), in which case vector 1|i ∈ Ep. If

the correspondence Ep were upper-hemicontinuous, we would immediately get existence

of a fixed point by Kakutani’s theorem. Unfortunately, this might not be true.

Define

h = inf
p∈∆

max
i∈{1,...,n}

d (p,Ri) ;

for each p the maximum is finite and well-defined, because each Ri 6= ∅. Let us show

that h > 0. Since the infimum is taken over a compact set and the function d (p,Ri) is

continuous in p, it is achieved for some p ∈ ∆. If h = 0, then d (p,Ri) = 0 for all i, and

thus p ∈ Ri for all Ri. But we showed that
⋂n
i=1Ri = ∅, which yields a contradiction

that proves that h > 0. This implies, in particular, that for every point p ∈ ∆, there is

i ∈ {1, . . . , n} such that within the h
2
-neighborhood of p there are no points belonging to

Ri.

For each p ∈ ∆, introduce the set Qp given by:

Qp =
⋂
q∈∆

N

(
Eq,

2

h
‖p− q‖

)
.

We establish the following properties.

First, for every p, Qp ⊂ Ep, because for q = p, N
(
Eq,

2
h
‖p− q‖

)
= N (Ep, 0) = Ep =

Ep, since Ep is closed.

Second, for every p, Qp is convex, because it is the intersection of convex sets (N (Y, ε)

is convex for any ε if Y is convex, and Eq is convex for each q).

Third, let Q ⊂ ∆×∆ be the graph of mapping p 7→ Qp, i.e.,

Q = {(p, r) ∈ ∆×∆ : r ∈ Qp} ;

then Q is closed. To see this, notice that

Q =
⋃
p∈∆

⋂
q∈∆

{
(p, r) : r ∈ N

(
Eq,

2

h
‖p− q‖

)}
=

⋂
q∈∆

⋃
p∈∆

{
(p, r) : r ∈ N

(
Eq,

2

h
‖p− q‖

)}
.

But for each q, the mapping p 7→ N
(
Eq,

2
h
‖p− q‖

)
has a closed graph (this is a continuous
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set-valued mapping), and thus Q is closed as an intersection of closed sets.

Fourth, for every p ∈ ∆, Qp is nonempty. Indeed, from the definition of h it follows

that there is i ∈ {1, . . . , n} such that q ∈ N
(
{p} , h

2

)
implies q /∈ Ri, and in particular

p /∈ Ri. Let us show that the vector 1|i ∈ Qp. To do this, we need to show that for every

q ∈ ∆,

1|i ∈ N
(
Eq,

2

h
‖p− q‖

)
.

If q ∈ N
(
{p} , h

2

)
, we have q /∈ Ri, which implies 1|i ∈ Eq, which establishes the required

inclusion for such q. In the complementary case, q /∈ N
(
{p} , h

2

)
, we have ‖p− q‖ > h

2
, and

thus N
(
Eq,

2
h
‖p− q‖

)
= ∆ (since Eq is nonempty and the maximum distance between

two points in ∆ is 1). So the required inclusion is satisfied in this case as well. Since it

holds for every q, this proves that 1|i ∈ Qp, so Qp 6= ∅ for any p ∈ ∆.

Now, the second, third, and fourth properties show that the mapping p 7→ Qp satisfies

the requirements of Kakutani’s fixed-point theorem. Therefore, there is p ∈ ∆ such that

p ∈ Qp. The first property now implies that this p ∈ Ep. Therefore, the mapping p 7→ Ep

has a fixed point. We have that for all x ∈ Dp, Gp (x) ≤ 0, which contradicts the definition

of Dp. This contradiction completes the proof. �

Proof of Proposition 6. We just need to check that if condition (1) is satisfied for

the function V , then it is also satisfied for V ′ = U ◦ V . We have, for any a, â,

U(V (a)) ≥ U

(
p0(â)V (â) +

n∑
i=1

pi(â)wi(â|a)

)

≥ p0(â)U(V (â)) +
n∑
i=1

pi(â)U(wi(â|a))

where the first inequality is because U is increasing and the second is because U is concave.

The result follows. �

Proof of Proposition 7. As in the proof of Proposition 4, it is enough to consider

deviations to a by types (x1, a2) and (a1, x2) with x < a.

To show necessity: Denote p1 = p1(a), so at a, dimension 1 is checked with probability

p1. Then write conditions stating that from (a1, x2) and (x1, a2) it is not profitable to

deviate to a:

p1V (a) + (1− p1)V (0, x2) ≤ V (a1, x2) ; (A1)

p1V (x1, 0) + (1− p1)V (a) ≤ V (x1, a2) . (A2)
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The first implies p1 ≤ V (a1,x2)−V (0,x2)
V (a)−V (0,x2)

(if the denominator is 0, then by monotonic-

ity V (a) = V (a1, x2) = V (0, x2) and the numerator is also 0). The second implies

p1 ≥ V (a)−V (x1,a2)
V (a)−V (x1,0)

(again, if the denominator is 0, then V (a) = V (x1, a2) = V (x1, 0) by

monotonicity and the numerator is also 0). We thus have V (a)−V (x1,a2)
V (a)−V (x1,0)

≤ V (a1,x2)−V (0,x2)
V (a)−V (0,x2)

.

Cross-multiplying gives

(V (a)− V (x1, a2))(V (a)− V (0, x2)) ≤ (V (a)− V (x1, 0))(V (a1, x2)− V (0, x2)),

which also holds in either of the zero-denominator cases (since both sides are then zero).

Adding (V (a) − V (x1, a2))(V (0, x2) − V (a1, x2)) to both sides gives the condition in the

proposition.

To show sufficiency: Suppose the condition holds for all x, a ∈ A such that x < a. Fix

a, and let us find probability p1 such that if a report of a leads to verification probabilities

p1(a) = p1, p2(a) = 1 − p1, this deters all deviations to a. First, notice that if V (a) =

V (x1, 0) for some x < a, then p1 = 1 will work (monotonicity implies V (a1, x2) = V (a)

for all x2 < a2, so none of these types gains from deviating, and types (x1, a2) will be

caught with certainty). Similarly, if V (a) − V (0, x2) for some x < a, then p1 = 0 will

work. Thus, we may assume that for any x < a, V (a) > V (x1, 0) and V (a) > V (0, x2).

Again rearranging the terms, the given inequality implies

V (a)− V (x1, a2)

V (a)− V (x1, 0)
≤ V (a1, x2)− V (0, x2)

V (a)− V (0, x2)
.

Since the left-hand side depends on x1 only and right-hand side depends on x2 only, we

have

sup
x1

V (a)− V (x1, a2)

V (a)− V (x1, 0)
≤ inf

x2

V (a1, x2)− V (0, x2)

V (a)− V (0, x2)
.

Now if we take p1 ∈
[
supx1

V (a)−V (x1,a2)
V (a)−V (x1,0)

, infx2
V (a1,x2)−V (0,x2)
V (a)−V (0,x2)

]
, we will have that for any x1

and any x2,
V (a)− V (x1, a2)

V (a)− V (x1, 0)
≤ p1 ≤

V (a1, x2)− V (0, x2)

V (a)− V (0, x2)
.

Rearranging each of these inequalities, we get the conditions (A1)–(A2), saying that from

(a1, x2) and (x1, a2) it is not profitable to deviate to a. �

Proof of Proposition 9. First we show necessity. Take the weights λS as given;

we can assume λ∅ = 0, since the value of λ∅ has no effect either on the validity of the

collection of weights or on the inequality to be proven. Type a|S can, by imitating type
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a, get at least
(
p0(a) +

∑
i∈S pi(a)

)
V (a). Hence, incentive compatibility implies(

p0(a) +
∑
i∈S

pi(a)

)
V (a) ≤ V (a|S).

Now multiply by λS, and then sum over all S. On the left side, the coefficient p0(a)

appears with total weight
∑

S λS ≥ 1, and for each i = 1, . . . , n, pi(a) appears with total

weight
∑

S:i∈S λS = 1. Hence, we get(
p0(a) +

n∑
i=1

pi(a)

)
V (a) ≤

∑
S

λSV (a|S).

The left side is just V (a), showing that the asserted condition holds.

Now we prove sufficiency. For each type a, we need to construct the appropriate veri-

fication probabilities pi(a) to discourage deviations to a. If V (a) = 0 we can choose these

probabilities arbitrarily, as clearly no type would deviate to such a. Now assume V (a) > 0.

We claim that there exist nonnegative numbers r1, . . . , rn such that r1+· · ·+rn = V (a)

and, for each subset S ⊂ {1, . . . , n},
∑

i∈S ri ≤ V (a|S).

Suppose not. Then, applying a theorem of the alternative, we get the existence of

nonnegative numbers λS, for each S ⊂ {1, . . . , n}, such that
∑

S:i∈S λS ≥ 1 for each i and∑
S λSV (a|S) < V (a).

This is almost a contradiction to our assumed condition on V , except that for each

index i, the total weight on sets containing i is ≥ 1, rather than exactly 1 as required.

However, if the inequality is strict, then we can take some of the weight on a set S

containing i and transfer it to set S\{i}. This decreases the total weight on sets containing

i, without changing the total weight on sets containing j, for any j 6= i. Iterating this, we

can eventually get the total weight on sets containing i to be exactly 1 for each i. Moreover,

each such operation can only decrease the value of
∑

S λSV (a|S), since V is monotone

and we are transferring weight from larger to smaller sets. Hence the final weights will

satisfy
∑

i∈S λS = 1 for each index i, and will still satisfy
∑

S λSV (a|S) < V (a), thus

contradicting the assumption.

This implies the desired numbers r1, . . . , rn exist. Define the verification probabilities

by pi(a) = ri/V (a). We just need to check incentive compatibility condition (4).

Suppose the sender has type a, but reports â. Let S be the set of coordinates i for

which âi = ai. Then ∑
i∈S

pi(â) =

∑
i∈S ri

V (â)
≤ V (a|S)

V (â)
≤ V (a)

V (â)
,
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which is exactly what (4) requires. �

Proof of Proposition 10. Let us prove that the proposed mechanism is incentive

compatible. If the sender has type a and reports truthfully, he evidently gets V (a). If

he falsely reports â, then he gets the reward V (â) only if the verified dimension i is such

that âi = ai; let S be the set of such indices i. Using the notation a|S as in the text, the

sender’s expected payoff from misreporting is

∑
i∈S

V (â|[i])− V (â|[i−1])

V (â)
V (â) =

∑
i∈S

(V (â|[i])− V (â|[i−1]))

≤
∑
i∈S

(V ((a|S)|[i])− V ((a|S)|[i−1]))

= V (a|S)

≤ V (a).

Here the first inequality is by submodularity, and the second is because V is increasing.

So, there is no incentive to lie. �

The following auxiliary result will be used in the proof of Proposition 11.

Lemma A1. Let q1, . . . , qn, m1, . . . ,mn and t1, . . . , tn be positive numbers such that tj <

mj for all j, and
∑

j qj =
∑

jmj = 1. Put t =
∑

j tj. Then,(∑
j

(mj − tj)
(
qj
mj

)1−t
)∏

j

(
qj
mj

)tj
≤ 1− t.

Proof. Note that for each i, we have

(mi − ti)
(
qi
mi

)1−t∏
j

(
qj
mj

)tj
≤ (mi − ti)

[
(1− t) qi

mi

+
∑
j

tj
qj
mj

]

by the AM-GM inequality. Sum over i = 1, . . . , n. On the right-hand side, each qi/mi

appears with coefficient

(mi − ti)(1− t) +
∑
j

(mj − tj)ti = (mi − ti)(1− t) + (1− t)ti = mi(1− t).

So the right-hand side simplifies to
∑

imi(1− t)(qi/mi) = (1− t)
∑

i qi = 1 − t, and the

lemma follows.
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Proof of Proposition 11. We have defined Mχ and pχ in the text. We have also

defined σχ(a) for types a ∈ AK . This allows us to define beliefs µχ(h) ∈ ∆(AK) by

Bayesian updating. Below, we will give an explicit formula for µχ. This then completes

the definition of the mechanism, except for one detail: the formal definition of a mechanism

requires specifying σχ(a) for every type a ∈ A, not just for types a ∈ AK . However, we

can subsequently assign to each type a /∈ AK whatever message maximizes its expected

payoff (the maximum exists by continuity arguments); since these types collectively have

probability zero, this assumption does not affect the Bayesian updating. The mechanism

is then completely defined. We will then show that the resulting mechanism is incentive-

compatible, i.e., a valid mechanism; and we will establish the convergence property.

Let qi = ai∑n
j=1 aj

= ai
V (a)

be the relative skills of the sender. Suppose that the receiver

got message m and treats it as truthfully reflecting the relative skills of the sender, m = q.

Conditional on this information, the posterior distribution of V (a) is lognormal, so that

(log V (ã) | m) ∼ N
(∑n

i=1
τi
τ

(νi − logmi) ,
1
τ

)
. (Hereinafter we write ã for the unknown

type that is a random variable from the receiver’s point of view, and a for the true type.)

This follows from the following calculation: the conditional density of (log V (ã) | m) at

point z is equal to:∏n
i=1

√
τi
2π

exp
(
−1

2

∑n
i=1 τi (z + logmi − νi)2)

+∞∫
−∞

∏n
i=1

√
τi
2π

exp
(
−1

2

∑n
i=1 τi (λ+ logmi − νi)2) dλ

=
exp

(
−1

2

∑n
i=1 τi (z + logmi − νi)2)

+∞∫
−∞

exp
(
−1

2

∑n
i=1 τi (λ+ logmi − νi)2) dλ

=

exp

(
− τ

2

((
z −

n∑
i=1

τi(νi−logmi)
τ

)2

+
n∑
i=1

τi(νi−logmi)
2

τ
−
(

n∑
i=1

τi(νi−logmi)
τ

)2
))

+∞∫
−∞

exp

(
− τ

2

((
λ−

n∑
i=1

τi(νi−logmi)
τ

)2

+
n∑
i=1

τi(νi−logmi)
2

τ
−
(

n∑
i=1

τi(νi−logmi)
τ

)2
))

dλ

=

√
τ

2π
exp

(
−1

2
τ

(
z −

n∑
i=1

τi
τ

(νi − logmi)

)2
)

√
τ

2π

+∞∫
−∞

exp

(
−1

2
τ

(
λ−

n∑
i=1

τi
τ

(νi − logmi)

)2
)
dλ

=

√
τ

2π
exp

(
−1

2
τ

(
z −

n∑
i=1

τi
τ

(νi − logmi)

))
.
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Now suppose that the receiver tested dimension i and got signal s = aiη = V (a)miη.

Conditional on m being equal to q as assumed by the receiver so far, s has lognormal

distribution, with log s = (log V (a) | m) + logmi + log η. Thus, log s− logmi is a signal

of the unknown value (log V (ã) | m) with precision χ. Thus, we have that the posterior

of V (ã) is lognormal, with

(log V (ã) | m, i, s) ∼ N

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log s− logmi) ,

1

τ + χ

)
.

This pins down the belief µχ(m, i, s): it is a (one-dimensional) lognormal distribution on

the ray of types whose relative skills agree with m; the parameters of this lognormal are

as indicated above. This completes the description of the mechanism, as indicated in the

first paragraph above.

Notice that this formula for beliefs implies the convergence part of the Proposition.

Indeed, for a truthful report by the sender of a given type a, mi = qi = ai
V (a)

and log s−
logmi = log V (a) + log η. For a fixed η (equivalently, fixed s), (log V (ã) | m, i, s) may be

thought of as a sum of a variable distributed asN

(
τ

τ+χ

n∑
j=1

τj
τ

(νj − logmj) + χ
τ+χ

log V (a) , 1
τ+χ

)
and a constant χ

τ+χ
log η. Therefore, if we take the expectation over realizations of s

(equivalently, η), we get

Es [log V (ã) | m, i, s] ∼ N

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
log V (a) ,

τ + 2χ

(τ + χ)2

)
;

we used that χ
τ+χ

log η is normal with expectation 0 and variance
(

χ
τ+χ

)2
1
χ

= χ

(τ+χ)2
. For

each given i, this distribution converges to an atom on log V (a) as χ→∞; furthermore,

note that the distribution actually is the same for all i. This proves that following truthful

report m = q, the expected posterior over log V (ã) (averaged over both i and s) converges

to an atom in log V (a). Since there is no uncertainty about the relative skills (they are

given by m), the convergence of κ(a) follows.

It remains to prove that the constructed mechanism is incentive compatible for the

sender. For a given realization of i and s, the sender who sent message m (not necessarily

truthfully!) expects to get a payoff equal to

E [V (ã) | m, i, s] = exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log s− logmi) +

1

2

1

τ + χ

)
,
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since this is the expectation of exponent of (log V (ã) | m, i, s), which is normally dis-

tributed. Now, continuing to write a for the true type, and taking expectation over

possible realizations of s (or, equivalently, over η), we get

exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

2χ+ τ

(χ+ τ)2

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j .

Indeed, we have

Eη exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai + log η − logmi) +

1

2

1

τ + χ

)

= exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai − logmi) +

1

2

1

τ + χ

)
Eη exp

(
χ

τ + χ
log η

)

= exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai − logmi) +

1

2

1

τ + χ
+

1

2

χ

(τ + χ)2

)

= exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai − logmi) +

1

2

τ + 2χ

(τ + χ)2

)

= exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

τ + 2χ

(τ + χ)2

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j .

Therefore, his expected payoff from sending message m equals

n∑
i=1

pi (m) exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

τ + 2χ

(τ + χ)2

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j

= C ×
n∑
i=1

(
mi

(
1 +

τ

χ

)
− τi
χ

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j

= C ×H (m) ,

where

C = exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

τ + 2χ

(τ + χ)2

)
,

H(m) =

(
n∏
j=1

m
−

τj
τ+χ

j

)(
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) χ
τ+χ

)
.

Now, we need to prove that it is indeed optimal to send message m = q, with qi =
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ai∑n
j=1 aj

. Since the C factor is a constant, we need to prove that

q ∈ arg max
m∈M

H (m) .

We apply Lemma A1 to {qj} and {mj}, taking tj = τj/(τ + χ) (so t = τ/(τ + χ)). Take

the resulting inequality and multiply both sides by τ+χ
χ

(∑
j aj

) χ
τ+χ

(∏
j q
−

τj
τ+χ

j

)
. Then

the left side equals H(m), and the right side equals
(∑

j aj

)(∏
j a
−

τj
τ+χ

j

)
= H(q). This

shows that H(m) ≤ H(q) for all m, so it is optimal to report the true relative skills, i.e.

the mechanism is incentive-compatible. �

The next result formalizes and proves the claim in Footnote 9.

Proposition A2. Suppose V (µ) = (Ea∼µ [
∑n

i=1 ai])
γ

for some γ ∈ (0, 1). Then Proposi-

tion 11 is correct as stated.

Proof. The detailed proof of this result follows the same steps as the proof of Proposition

11 and is omitted. The argument below highlights one additional step needed to complete

the proof.

As in the proof of Proposition 11, we show that the posterior distribution of
∑n

i=1 ãi =

V (ã)1/γ is given by

(
log V (ã)1/γ | m, i, s

)
∼ N

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log s− logmi) ,

1

τ + χ

)
.

We then use similar steps to reduce incentive-compatibility to showing that the true vector

q of relative skills satisfies

q ∈ arg max
m∈M

Hγ (m) ,

where

Hγ(m) =

(
n∏
j=1

m
−
γτj
τ+χ

j

)(
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) γχ
τ+χ

)
.

To show this, we take notice that Hγ (m) ≤ (H (m))γ for all m; indeed,(
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) χ
τ+χ

)γ

≥
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) γχ
τ+χ

by concavity of the power function for γ ∈ (0, 1). At the same time, Hγ (q) = H (q),

because
aj
qj

= (V (a))1/γ, which is a constant. Thus, the inequality H(m) ≤ H(q), which
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was established in the proof of Proposition 11, implies

Hγ (m) ≤ (H (m))γ ≤ (H (q))γ = Hγ (q) ,

thus establishing incentive compatibility.

Finally, we return to the setting of perfect verification, and we formalize the claim

in Footnote 6, that full learning of V (a) implies full learning of a is possible. For this

we must return to the original formulation of the model, where posterior beliefs are non-

degenerate, and V is defined on ∆(A). We need an extra assumption: Say that V respects

constant values if, for every constant c, if µ is any distribution on A such that V (a) = c

for all a in the support of µ, then V (µ) = c as well.

Say that an (indirect) mechanism achieves full learning of V (a) if, for every type a,

every history h ∈ H(a|M), and every a′ ∈ supp(µ(h)), we have V (a′) = V (a).

Proposition A3. Assume that V respects constant values. If there exists an indirect

mechanism that achieves full learning of V (a), then there exists a direct mechanism with

full learning of a.

Proof. Let M = (M,σ, p, µ) be the mechanism that achieves full learning of V (a).

We now repeat the proof of Lemma 0. The same proof goes through, except for two

adjustments: in the two steps that originally applied full learning for the original mech-

anism, we now apply full learning of V (a) together with respecting constant values; and

the fact that type a receives equilibrium payoff V (a) in the original mechanism also uses

these two properties. �
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